-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsolution.java
47 lines (40 loc) · 2.08 KB
/
solution.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import java.util.Arrays;
class Solution {
// This method counts the number of pairs (i, j) such that the difference
// between nums[j] and nums[i] is less than or equal to 'mid'.
private int countPairs(int[] nums, int mid) {
int count = 0; // Initialize the count of pairs to zero.
// Use two pointers i and j to find the pairs.
for (int i = 0, j = 0; i < nums.length; ++i) {
// Move pointer j to the right as long as the difference between nums[j] and
// nums[i] is less than or equal to 'mid'.
while (j < nums.length && nums[j] - nums[i] <= mid) {
++j; // Increment j to expand the window of pairs.
}
// The number of valid pairs with nums[i] as the first element is (j - i - 1).
count += j - i - 1;
}
return count; // Return the total count of valid pairs.
}
// This method finds the k-th smallest distance pair.
public int smallestDistancePair(int[] nums, int k) {
Arrays.sort(nums); // Sort the array to allow binary search and two-pointer technique.
int low = 0; // Initialize the lowest possible distance (difference between identical
// elements).
int high = nums[nums.length - 1] - nums[0]; // Initialize the highest possible distance (difference between max
// and min elements).
// Use binary search to find the smallest distance such that there are at least
// 'k' pairs with that distance.
while (low < high) {
int mid = (low + high) / 2; // Calculate the middle value of the current search range.
// Check if there are at least 'k' pairs with a distance less than or equal to
// 'mid'.
if (countPairs(nums, mid) >= k) {
high = mid; // If yes, search in the lower half.
} else {
low = mid + 1; // If no, search in the upper half.
}
}
return low; // 'low' will be the smallest distance with at least 'k' pairs.
}
}