-
Notifications
You must be signed in to change notification settings - Fork 8
/
test.py
135 lines (113 loc) · 3.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#coding=utf-8
# decompress ip2 layer
import caffe
from caffe import layers as L, params as P, to_proto
from caffe.proto import caffe_pb2
import lmdb
import numpy as np
import os
import sys
from numpy import linalg as la
import matplotlib.pyplot as plt
from base import *
CAFFE_HOME = "/opt/caffe/"
RESULT_DIR = "./result/"
SVD_R = 6
deploySVD = GetSVDProto(SVD_R)
deploy = "./proto/cifar10_quick.prototxt"
caffe_model = CAFFE_HOME + "/examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5"
train_db = CAFFE_HOME + "examples/cifar10/cifar10_train_lmdb"
test_db = CAFFE_HOME + "examples/cifar10/cifar10_test_lmdb"
mean_proto = CAFFE_HOME + "examples/cifar10/mean.binaryproto"
mean_npy = "./mean.npy"
mean_pic = np.load(mean_npy)
def read_db(db_name):
lmdb_env = lmdb.open(db_name)
lmdb_txn = lmdb_env.begin()
lmdb_cursor = lmdb_txn.cursor()
datum = caffe.proto.caffe_pb2.Datum()
X = []
y = []
cnts = {}
for key, value in lmdb_cursor:
datum.ParseFromString(value)
label = datum.label
data = caffe.io.datum_to_array(datum)
#data = data.swapaxes(0, 2).swapaxes(0, 1)
X.append(data)
y.append(label)
if label not in cnts:
cnts[label] = 0
cnts[label] += 1
#plt.imshow(data)
#plt.show()
return X, np.array(y), cnts
testX, testy, cnts = read_db(test_db)
#testX, testy, cnts = read_db(train_db)
print ("#train set: ", len(testX))
print ("the size of sample:", testX[0].shape)
print ("kinds: ", cnts)
if not os.path.exists("label.npy"):
np.save("label.npy", testy)
# Load model and network
net = caffe.Net(deploy, caffe_model, caffe.TEST)
for layer_name, param in net.params.items():
# 0 is weight, 1 is biases
print (layer_name, param[0].data.shape,net.blobs[layer_name].data.shape)
if SVD_R > 0:
netSVD = caffe.Net(deploySVD, caffe_model, caffe.TEST)
print ("SVD NET:")
for layer_name, param in netSVD.params.items():
# 0 is weight, 1 is biases
print (layer_name, param[0].data.shape)
print (type(net.params))
print (net.params.keys())
print ("layer ip2:")
print ("WEIGHT:")
print (net.params["ip2"][0].data.shape)
print ("BIASES:")
print (net.params["ip2"][1].data.shape)
data, label = L.Data(source = test_db, backend = P.Data.LMDB, batch_size = 100, ntop = 2, mean_file = mean_proto)
if SVD_R > 0:
# SVD
print ("SVD %d" % SVD_R)
u, sigma, vt = la.svd(net.params["ip2"][0].data)
print ("Sigma: ", sigma)
if SVD_R > len(sigma):
print ("SVD_R is too large :-(")
sys.exit()
U = np.matrix(u[:, :SVD_R])
S = np.matrix(np.diag(sigma[:SVD_R]))
VT = np.matrix(vt[:SVD_R, :])
print ("IP2", net.params["ip2"][0].data.shape) # 10, 64
print ("U", U.shape)
print ("S", S.shape)
print ("VT", VT.shape)
# y = Wx + b
# y = U * S * VT * x + b
# y = U * ((S * VT) * x) + b
# y = U * (Z * x) + b
Z = S * VT
np.copyto(netSVD.params["ipZ"][0].data, Z)
np.copyto(netSVD.params["ipU"][0].data, U)
np.copyto(netSVD.params["ipU"][1].data, net.params["ip2"][1].data)
nn = netSVD
#nn.save("net_SVD%d.caffemodel" % SVD_R)
else:
print ("NORMAL")
nn = net
n = len(testX)
pre = np.zeros(testy.shape)
print ("N = %d" % n)
for i in range(n):
nn.blobs["data"].data[...] = testX[i] - mean_pic
nn.forward()
prob = nn.blobs["prob"].data
pre[i] = prob.argmax()
print ("%d / %d" % (i + 1, n))
right = np.sum(pre == testy)
print ("Accuracy: %f" % (right * 1.0 / n))
if SVD_R > 0:
np.save(RESULT_DIR + "net_SVD%d.npy" % SVD_R, pre)
else:
np.save(RESULT_DIR + "net_normal.npy", pre)