forked from boostorg/compute
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperf_cart_to_polar.cpp
157 lines (128 loc) · 4.35 KB
/
perf_cart_to_polar.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <[email protected]>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://kylelutz.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <algorithm>
#include <iostream>
#include <vector>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/copy_n.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/container/vector.hpp>
#include "perf.hpp"
namespace compute = boost::compute;
using compute::float2_;
float rand_float()
{
return (float(rand()) / float(RAND_MAX)) * 1000.f;
}
void serial_cartesian_to_polar(const float *input, size_t n, float *output)
{
for(size_t i = 0; i < n; i++){
float x = input[i*2+0];
float y = input[i*2+1];
float magnitude = std::sqrt(x*x + y*y);
float angle = std::atan2(y, x) * 180.f / M_PI;
output[i*2+0] = magnitude;
output[i*2+1] = angle;
}
}
void serial_polar_to_cartesian(const float *input, size_t n, float *output)
{
for(size_t i = 0; i < n; i++){
float magnitude = input[i*2+0];
float angle = input[i*2+1];
float x = magnitude * cos(angle);
float y = magnitude * sin(angle);
output[i*2+0] = x;
output[i*2+1] = y;
}
}
// converts from cartesian coordinates (x, y) to polar coordinates (magnitude, angle)
BOOST_COMPUTE_FUNCTION(float2_, cartesian_to_polar, (float2_ p),
{
float x = p.x;
float y = p.y;
float magnitude = sqrt(x*x + y*y);
float angle = atan2(y, x) * 180.f / M_PI;
return (float2)(magnitude, angle);
});
// converts from polar coordinates (magnitude, angle) to cartesian coordinates (x, y)
BOOST_COMPUTE_FUNCTION(float2_, polar_to_cartesian, (float2_ p),
{
float magnitude = p.x;
float angle = p.y;
float x = magnitude * cos(angle);
float y = magnitude * sin(angle);
return (float2)(x, y)
});
int main(int argc, char *argv[])
{
perf_parse_args(argc, argv);
std::cout << "size: " << PERF_N << std::endl;
// setup context and queue for the default device
compute::device device = compute::system::default_device();
compute::context context(device);
compute::command_queue queue(context, device);
std::cout << "device: " << device.name() << std::endl;
// create vector of random numbers on the host
std::vector<float> host_vector(PERF_N*2);
std::generate(host_vector.begin(), host_vector.end(), rand_float);
// create vector on the device and copy the data
compute::vector<float2_> device_vector(PERF_N, context);
compute::copy_n(
reinterpret_cast<float2_ *>(&host_vector[0]),
PERF_N,
device_vector.begin(),
queue
);
perf_timer t;
for(size_t trial = 0; trial < PERF_TRIALS; trial++){
t.start();
compute::transform(
device_vector.begin(),
device_vector.end(),
device_vector.begin(),
cartesian_to_polar,
queue
);
queue.finish();
t.stop();
}
std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl;
// perform saxpy on host
t.clear();
for(size_t trial = 0; trial < PERF_TRIALS; trial++){
t.start();
serial_cartesian_to_polar(&host_vector[0], PERF_N, &host_vector[0]);
t.stop();
}
std::cout << "host time: " << t.min_time() / 1e6 << " ms" << std::endl;
std::vector<float> device_data(PERF_N*2);
compute::copy(
device_vector.begin(),
device_vector.end(),
reinterpret_cast<float2_ *>(&device_data[0]),
queue
);
for(size_t i = 0; i < PERF_N; i++){
float host_value = host_vector[i];
float device_value = device_data[i];
if(std::abs(device_value - host_value) > 1e-3){
std::cout << "ERROR: "
<< "value at " << i << " "
<< "device_value (" << device_value << ") "
<< "!= "
<< "host_value (" << host_value << ")"
<< std::endl;
return -1;
}
}
return 0;
}