-
Notifications
You must be signed in to change notification settings - Fork 66
/
ac.scm
1436 lines (1161 loc) · 44.7 KB
/
ac.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
; Arc Compiler.
(module ac mzscheme
(provide (all-defined))
; uncomment the following require for mzscheme-4.x
; much of Arc will work, but not mutable pairs.
; (require rnrs/mutable-pairs-6)
(require (lib "port.ss"))
(require (lib "process.ss"))
(require (lib "pretty.ss"))
; compile an Arc expression into a Scheme expression,
; both represented as s-expressions.
; env is a list of lexically bound variables, which we
; need in order to decide whether set should create a global.
(define (ac s env)
(cond ((string? s) (ac-string s env))
((literal? s) s)
((eqv? s 'nil) (list 'quote 'nil))
((ssyntax? s) (ac (expand-ssyntax s) env))
((symbol? s) (ac-var-ref s env))
((ssyntax? (xcar s)) (ac (cons (expand-ssyntax (car s)) (cdr s)) env))
((eq? (xcar s) 'quote) (list 'quote (ac-niltree (cadr s))))
((eq? (xcar s) 'quasiquote) (ac-qq (cadr s) env))
((eq? (xcar s) 'if) (ac-if (cdr s) env))
((eq? (xcar s) 'fn) (ac-fn (cadr s) (cddr s) env))
((eq? (xcar s) 'assign) (ac-set (cdr s) env))
; the next three clauses could be removed without changing semantics
; ... except that they work for macros (so prob should do this for
; every elt of s, not just the car)
((eq? (xcar (xcar s)) 'compose) (ac (decompose (cdar s) (cdr s)) env))
((eq? (xcar (xcar s)) 'complement)
(ac (list 'no (cons (cadar s) (cdr s))) env))
((eq? (xcar (xcar s)) 'andf) (ac-andf s env))
((pair? s) (ac-call (car s) (cdr s) env))
(#t (err "Bad object in expression" s))))
(define atstrings #f)
(define (ac-string s env)
(if atstrings
(if (atpos s 0)
(ac (cons 'string (map (lambda (x)
(if (string? x)
(unescape-ats x)
x))
(codestring s)))
env)
(unescape-ats s))
(string-copy s))) ; avoid immutable strings
(define (literal? x)
(or (boolean? x)
(char? x)
(string? x)
(number? x)
(eq? x '())))
(define (ssyntax? x)
(and (symbol? x)
(not (or (eqv? x '+) (eqv? x '++) (eqv? x '_)))
(let ((name (symbol->string x)))
(has-ssyntax-char? name (- (string-length name) 1)))))
(define (has-ssyntax-char? string i)
(and (>= i 0)
(or (let ((c (string-ref string i)))
(or (eqv? c #\:) (eqv? c #\~)
(eqv? c #\+)
;(eqv? c #\_)
(eqv? c #\.) (eqv? c #\!)))
(has-ssyntax-char? string (- i 1)))))
(define (read-from-string str)
(let ((port (open-input-string str)))
(let ((val (read port)))
(close-input-port port)
val)))
; Though graphically the right choice, can't use _ for currying
; because then _!foo becomes a function. Maybe use <>. For now
; leave this off and see how often it would have been useful.
; Might want to make ~ have less precedence than +, because
; ~foo+bar prob should mean (andf (complement foo) bar), not
; (complement (andf foo bar)).
(define (expand-ssyntax sym)
((cond ((or (insym? #\: sym) (insym? #\~ sym)) expand-compose)
((insym? #\+ sym) expand-and)
; ((insym? #\_ sym) expand-curry)
((or (insym? #\. sym) (insym? #\! sym)) expand-sexpr)
(#t (error "Unknown ssyntax" sym)))
sym))
(define (expand-compose sym)
(let ((elts (map (lambda (tok)
(if (eqv? (car tok) #\~)
(if (null? (cdr tok))
'no
`(complement ,(chars->value (cdr tok))))
(chars->value tok)))
(tokens (lambda (c) (eqv? c #\:))
(symbol->chars sym)
'()
'()
#f))))
(if (null? (cdr elts))
(car elts)
(cons 'compose elts))))
(define (expand-and sym)
(let ((elts (map chars->value
(tokens (lambda (c) (eqv? c #\+))
(symbol->chars sym)
'()
'()
#f))))
(if (null? (cdr elts))
(car elts)
(cons 'andf elts))))
; How to include quoted arguments? Can't treat all as quoted, because
; never want to quote fn given as first. Do we want to allow quote chars
; within symbols? Could be ugly.
; If release, fix the fact that this simply uses v0... as vars. Should
; make these vars gensyms.
(define (expand-curry sym)
(let ((expr (exc (map (lambda (x)
(if (pair? x) (chars->value x) x))
(tokens (lambda (c) (eqv? c #\_))
(symbol->chars sym)
'()
'()
#t))
0)))
(list 'fn
(keep (lambda (s)
(and (symbol? s)
(eqv? (string-ref (symbol->string s) 0)
#\v)))
expr)
expr)))
(define (keep f xs)
(cond ((null? xs) '())
((f (car xs)) (cons (car xs) (keep f (cdr xs))))
(#t (keep f (cdr xs)))))
(define (exc elts n)
(cond ((null? elts)
'())
((eqv? (car elts) #\_)
(cons (string->symbol (string-append "v" (number->string n)))
(exc (cdr elts) (+ n 1))))
(#t
(cons (car elts) (exc (cdr elts) n)))))
(define (expand-sexpr sym)
(build-sexpr (reverse (tokens (lambda (c) (or (eqv? c #\.) (eqv? c #\!)))
(symbol->chars sym)
'()
'()
#t))
sym))
(define (build-sexpr toks orig)
(cond ((null? toks)
'get)
((null? (cdr toks))
(chars->value (car toks)))
(#t
(list (build-sexpr (cddr toks) orig)
(if (eqv? (cadr toks) #\!)
(list 'quote (chars->value (car toks)))
(if (or (eqv? (car toks) #\.) (eqv? (car toks) #\!))
(err "Bad ssyntax" orig)
(chars->value (car toks))))))))
(define (insym? char sym) (member char (symbol->chars sym)))
(define (symbol->chars x) (string->list (symbol->string x)))
(define (chars->value chars) (read-from-string (list->string chars)))
(define (tokens test source token acc keepsep?)
(cond ((null? source)
(reverse (if (pair? token)
(cons (reverse token) acc)
acc)))
((test (car source))
(tokens test
(cdr source)
'()
(let ((rec (if (null? token)
acc
(cons (reverse token) acc))))
(if keepsep?
(cons (car source) rec)
rec))
keepsep?))
(#t
(tokens test
(cdr source)
(cons (car source) token)
acc
keepsep?))))
(define (ac-global-name s)
(string->symbol (string-append "_" (symbol->string s))))
(define (ac-var-ref s env)
(if (lex? s env)
s
(ac-global-name s)))
; quasiquote
(define (ac-qq args env)
(list 'quasiquote (ac-qq1 1 args env)))
; process the argument of a quasiquote. keep track of
; depth of nesting. handle unquote only at top level (level = 1).
; complete form, e.g. x or (fn x) or (unquote (fn x))
(define (ac-qq1 level x env)
(cond ((= level 0)
(ac x env))
((and (pair? x) (eqv? (car x) 'unquote))
(list 'unquote (ac-qq1 (- level 1) (cadr x) env)))
((and (pair? x) (eqv? (car x) 'unquote-splicing) (= level 1))
(list 'unquote-splicing
(list 'ar-nil-terminate (ac-qq1 (- level 1) (cadr x) env))))
((and (pair? x) (eqv? (car x) 'quasiquote))
(list 'quasiquote (ac-qq1 (+ level 1) (cadr x) env)))
((pair? x)
(map (lambda (x) (ac-qq1 level x env)) x))
(#t x)))
; (if) -> nil
; (if x) -> x
; (if t a ...) -> a
; (if nil a b) -> b
; (if nil a b c) -> (if b c)
(define (ac-if args env)
(cond ((null? args) ''nil)
((null? (cdr args)) (ac (car args) env))
(#t `(if (not (ar-false? ,(ac (car args) env)))
,(ac (cadr args) env)
,(ac-if (cddr args) env)))))
(define (ac-dbname! name env)
(if (symbol? name)
(cons (list name) env)
env))
(define (ac-dbname env)
(cond ((null? env) #f)
((pair? (car env)) (caar env))
(#t (ac-dbname (cdr env)))))
; translate fn directly into a lambda if it has ordinary
; parameters, otherwise use a rest parameter and parse it.
(define (ac-fn args body env)
(if (ac-complex-args? args)
(ac-complex-fn args body env)
(ac-nameit
(ac-dbname env)
`(lambda ,(let ((a (ac-denil args))) (if (eqv? a 'nil) '() a))
,@(ac-body* body (append (ac-arglist args) env))))))
; does an fn arg list use optional parameters or destructuring?
; a rest parameter is not complex
(define (ac-complex-args? args)
(cond ((eqv? args '()) #f)
((symbol? args) #f)
((and (pair? args) (symbol? (car args)))
(ac-complex-args? (cdr args)))
(#t #t)))
; translate a fn with optional or destructuring args
; (fn (x (o y x) (o z 21) (x1 x2) . rest) ...)
; arguments in top-level list are mandatory (unless optional),
; but it's OK for parts of a list you're destructuring to
; be missing.
(define (ac-complex-fn args body env)
(let* ((ra (ar-gensym))
(z (ac-complex-args args env ra #t)))
`(lambda ,ra
(let* ,z
,@(ac-body* body (append (ac-complex-getargs z) env))))))
; returns a list of two-element lists, first is variable name,
; second is (compiled) expression. to be used in a let.
; caller should extract variables and add to env.
; ra is the rest argument to the fn.
; is-params indicates that args are function arguments
; (not destructuring), so they must be passed or be optional.
(define (ac-complex-args args env ra is-params)
(cond ((or (eqv? args '()) (eqv? args 'nil)) '())
((symbol? args) (list (list args ra)))
((pair? args)
(let* ((x (if (and (pair? (car args)) (eqv? (caar args) 'o))
(ac-complex-opt (cadar args)
(if (pair? (cddar args))
(caddar args)
'nil)
env
ra)
(ac-complex-args
(car args)
env
(if is-params
`(car ,ra)
`(ar-xcar ,ra))
#f)))
(xa (ac-complex-getargs x)))
(append x (ac-complex-args (cdr args)
(append xa env)
`(ar-xcdr ,ra)
is-params))))
(#t (err "Can't understand fn arg list" args))))
; (car ra) is the argument
; so it's not present if ra is nil or '()
(define (ac-complex-opt var expr env ra)
(list (list var `(if (pair? ,ra) (car ,ra) ,(ac expr env)))))
; extract list of variables from list of two-element lists.
(define (ac-complex-getargs a)
(map (lambda (x) (car x)) a))
; (a b . c) -> (a b c)
; a -> (a)
(define (ac-arglist a)
(cond ((null? a) '())
((symbol? a) (list a))
((symbol? (cdr a)) (list (car a) (cdr a)))
(#t (cons (car a) (ac-arglist (cdr a))))))
(define (ac-body body env)
(map (lambda (x) (ac x env)) body))
; like ac-body, but spits out a nil expression if empty
(define (ac-body* body env)
(if (null? body)
(list (list 'quote 'nil))
(ac-body body env)))
; (set v1 expr1 v2 expr2 ...)
(define (ac-set x env)
`(begin ,@(ac-setn x env)))
(define (ac-setn x env)
(if (null? x)
'()
(cons (ac-set1 (ac-macex (car x)) (cadr x) env)
(ac-setn (cddr x) env))))
; trick to tell Scheme the name of something, so Scheme
; debugging and profiling make more sense.
(define (ac-nameit name v)
(if (symbol? name)
(let ((n (string->symbol (string-append " " (symbol->string name)))))
(list 'let `((,n ,v)) n))
v))
; = replaced by set, which is only for vars
; = now defined in arc (is it?)
; name is to cause fns to have their arc names for debugging
(define (ac-set1 a b1 env)
(if (symbol? a)
(let ((b (ac b1 (ac-dbname! a env))))
(list 'let `((zz ,b))
(cond ((eqv? a 'nil) (err "Can't rebind nil"))
((eqv? a 't) (err "Can't rebind t"))
((lex? a env) `(set! ,a zz))
(#t `(namespace-set-variable-value! ',(ac-global-name a)
zz)))
'zz))
(err "First arg to set must be a symbol" a)))
; given a list of Arc expressions, return a list of Scheme expressions.
; for compiling passed arguments.
(define (ac-args names exprs env)
(if (null? exprs)
'()
(cons (ac (car exprs)
(ac-dbname! (if (pair? names) (car names) #f) env))
(ac-args (if (pair? names) (cdr names) '())
(cdr exprs)
env))))
; generate special fast code for ordinary two-operand
; calls to the following functions. this is to avoid
; calling e.g. ar-is with its &rest and apply.
(define ac-binaries
'((is ar-is2)
(< ar-<2)
(> ar->2)
(+ ar-+2)))
; (foo bar) where foo is a global variable bound to a procedure.
(define (ac-global-call fn args env)
(cond ((and (assoc fn ac-binaries) (= (length args) 2))
`(,(cadr (assoc fn ac-binaries)) ,@(ac-args '() args env)))
(#t
`(,(ac-global-name fn) ,@(ac-args '() args env)))))
; compile a function call
; special cases for speed, to avoid compiled output like
; (ar-apply _pr (list 1 2))
; which results in 1/2 the CPU time going to GC. Instead:
; (ar-funcall2 _pr 1 2)
; and for (foo bar), if foo is a reference to a global variable,
; and it's bound to a function, generate (foo bar) instead of
; (ar-funcall1 foo bar)
(define direct-calls #f)
(define (ac-call fn args env)
(let ((macfn (ac-macro? fn)))
(cond (macfn
(ac-mac-call macfn args env))
((and (pair? fn) (eqv? (car fn) 'fn))
`(,(ac fn env) ,@(ac-args (cadr fn) args env)))
((and direct-calls (symbol? fn) (not (lex? fn env)) (bound? fn)
(procedure? (namespace-variable-value (ac-global-name fn))))
(ac-global-call fn args env))
((= (length args) 0)
`(ar-funcall0 ,(ac fn env) ,@(map (lambda (x) (ac x env)) args)))
((= (length args) 1)
`(ar-funcall1 ,(ac fn env) ,@(map (lambda (x) (ac x env)) args)))
((= (length args) 2)
`(ar-funcall2 ,(ac fn env) ,@(map (lambda (x) (ac x env)) args)))
((= (length args) 3)
`(ar-funcall3 ,(ac fn env) ,@(map (lambda (x) (ac x env)) args)))
((= (length args) 4)
`(ar-funcall4 ,(ac fn env) ,@(map (lambda (x) (ac x env)) args)))
(#t
`(ar-apply ,(ac fn env)
(list ,@(map (lambda (x) (ac x env)) args)))))))
(define (ac-mac-call m args env)
(let ((x1 (apply m (map ac-niltree args))))
(let ((x2 (ac (ac-denil x1) env)))
x2)))
; returns #f or the macro function
(define (ac-macro? fn)
(if (symbol? fn)
(let ((v (namespace-variable-value (ac-global-name fn)
#t
(lambda () #f))))
(if (and v
(ar-tagged? v)
(eq? (ar-type v) 'mac))
(ar-rep v)
#f))
#f))
; macroexpand the outer call of a form as much as possible
(define (ac-macex e . once)
(if (pair? e)
(let ((m (ac-macro? (car e))))
(if m
(let ((expansion (ac-denil (apply m (map ac-niltree (cdr e))))))
(if (null? once) (ac-macex expansion) expansion))
e))
e))
; macros return Arc lists, ending with NIL.
; but the Arc compiler expects Scheme lists, ending with '().
; what to do with (is x nil . nil) ?
; the first nil ought to be replaced with 'NIL
; the second with '()
; so the rule is: NIL in the car -> 'NIL, NIL in the cdr -> '().
; NIL by itself -> NIL
(define (ac-denil x)
(cond ((pair? x) (cons (ac-denil-car (car x)) (ac-denil-cdr (cdr x))))
(#t x)))
(define (ac-denil-car x)
(if (eq? x 'nil)
'nil
(ac-denil x)))
(define (ac-denil-cdr x)
(if (eq? x 'nil)
'()
(ac-denil x)))
; is v lexically bound?
(define (lex? v env)
(memq v env))
(define (xcar x)
(and (pair? x) (car x)))
; #f and '() -> nil for a whole quoted list/tree.
; Arc primitives written in Scheme should look like:
; (xdef foo (lambda (lst)
; (ac-niltree (scheme-foo (ar-nil-terminate lst)))))
; That is, Arc lists are NIL-terminated. When calling a Scheme
; function that treats an argument as a list, call ar-nil-terminate
; to change NIL to '(). When returning any data created by Scheme
; to Arc, call ac-niltree to turn all '() into NIL.
; (hash-table-get doesn't use its argument as a list, so it doesn't
; need ar-nil-terminate).
(define (ac-niltree x)
(cond ((pair? x) (cons (ac-niltree (car x)) (ac-niltree (cdr x))))
((or (eq? x #f) (eq? x '())) 'nil)
(#t x)))
; The next two are optimizations, except work for macros.
(define (decompose fns args)
(cond ((null? fns) `((fn vals (car vals)) ,@args))
((null? (cdr fns)) (cons (car fns) args))
(#t (list (car fns) (decompose (cdr fns) args)))))
(define (ac-andf s env)
(ac (let ((gs (map (lambda (x) (ar-gensym)) (cdr s))))
`((fn ,gs
(and ,@(map (lambda (f) `(,f ,@gs))
(cdar s))))
,@(cdr s)))
env))
(define err error)
; run-time primitive procedures
;(define (xdef a b)
; (namespace-set-variable-value! (ac-global-name a) b)
; b)
(define-syntax xdef
(syntax-rules ()
((xxdef a b)
(let ((nm (ac-global-name 'a))
(a b))
(namespace-set-variable-value! nm a)
a))))
(define fn-signatures (make-hash-table 'equal))
; This is a replacement for xdef that stores opeator signatures.
; Haven't started using it yet.
(define (odef a parms b)
(namespace-set-variable-value! (ac-global-name a) b)
(hash-table-put! fn-signatures a (list parms))
b)
(xdef sig fn-signatures)
; versions of car and cdr for parsing arguments for optional
; parameters, that yield nil for nil. maybe we should use
; full Arc car and cdr, so we can destructure more things
(define (ar-xcar x)
(if (or (eqv? x 'nil) (eqv? x '()))
'nil
(car x)))
(define (ar-xcdr x)
(if (or (eqv? x 'nil) (eqv? x '()))
'nil
(cdr x)))
; convert #f from a Scheme predicate to NIL.
(define (ar-nill x)
(if (or (eq? x '()) (eq? x #f))
'nil
x))
; definition of falseness for Arc if.
; must include '() since sometimes Arc functions see
; Scheme lists (e.g. . body of a macro).
(define (ar-false? x)
(or (eq? x 'nil) (eq? x '()) (eq? x #f)))
; call a function or perform an array ref, hash ref, &c
; Non-fn constants in functional position are valuable real estate, so
; should figure out the best way to exploit it. What could (1 foo) or
; ('a foo) mean? Maybe it should mean currying.
; For now the way to make the default val of a hash table be other than
; nil is to supply the val when doing the lookup. Later may also let
; defaults be supplied as an arg to table. To implement this, need: an
; eq table within scheme mapping tables to defaults, and to adapt the
; code in arc.arc that reads and writes tables to read and write their
; default vals with them. To make compatible with existing written tables,
; just use an atom or 3-elt list to keep the default.
(define (ar-apply fn args)
(cond ((procedure? fn)
(apply fn args))
((pair? fn)
(list-ref fn (car args)))
((string? fn)
(string-ref fn (car args)))
((hash-table? fn)
(ar-nill (hash-table-get fn
(car args)
(if (pair? (cdr args)) (cadr args) #f))))
; experiment: means e.g. [1] is a constant fn
; ((or (number? fn) (symbol? fn)) fn)
; another possibility: constant in functional pos means it gets
; passed to the first arg, i.e. ('kids item) means (item 'kids).
(#t (err "Function call on inappropriate object" fn args))))
(xdef apply (lambda (fn . args)
(ar-apply fn (ar-apply-args args))))
; special cases of ar-apply for speed and to avoid consing arg lists
(define (ar-funcall0 fn)
(if (procedure? fn)
(fn)
(ar-apply fn (list))))
(define (ar-funcall1 fn arg1)
(if (procedure? fn)
(fn arg1)
(ar-apply fn (list arg1))))
(define (ar-funcall2 fn arg1 arg2)
(if (procedure? fn)
(fn arg1 arg2)
(ar-apply fn (list arg1 arg2))))
(define (ar-funcall3 fn arg1 arg2 arg3)
(if (procedure? fn)
(fn arg1 arg2 arg3)
(ar-apply fn (list arg1 arg2 arg3))))
(define (ar-funcall4 fn arg1 arg2 arg3 arg4)
(if (procedure? fn)
(fn arg1 arg2 arg3 arg4)
(ar-apply fn (list arg1 arg2 arg3 arg4))))
; replace the nil at the end of a list with a '()
(define (ar-nil-terminate l)
(if (or (eqv? l '()) (eqv? l 'nil))
'()
(cons (car l) (ar-nil-terminate (cdr l)))))
; turn the arguments to Arc apply into a list.
; if you call (apply fn 1 2 '(3 4))
; then args is '(1 2 (3 4 . nil) . ())
; that is, the main list is a scheme list.
; and we should return '(1 2 3 4 . ())
; was once (apply apply list (ac-denil args))
; but that didn't work for (apply fn nil)
(define (ar-apply-args args)
(cond ((null? args) '())
((null? (cdr args)) (ar-nil-terminate (car args)))
(#t (cons (car args) (ar-apply-args (cdr args))))))
(xdef cons cons)
(xdef car (lambda (x)
(cond ((pair? x) (car x))
((eqv? x 'nil) 'nil)
((eqv? x '()) 'nil)
(#t (err "Can't take car of" x)))))
(xdef cdr (lambda (x)
(cond ((pair? x) (cdr x))
((eqv? x 'nil) 'nil)
((eqv? x '()) 'nil)
(#t (err "Can't take cdr of" x)))))
(define (tnil x) (if x 't 'nil))
; (pairwise pred '(a b c d)) =>
; (and (pred a b) (pred b c) (pred c d))
; pred returns t/nil, as does pairwise
; reduce?
(define (pairwise pred lst)
(cond ((null? lst) 't)
((null? (cdr lst)) 't)
((not (eqv? (pred (car lst) (cadr lst)) 'nil))
(pairwise pred (cdr lst)))
(#t 'nil)))
; not quite right, because behavior of underlying eqv unspecified
; in many cases according to r5rs
; do we really want is to ret t for distinct strings?
; for (is x y)
(define (ar-is2 a b)
(tnil (or (eqv? a b)
(and (string? a) (string? b) (string=? a b))
(and (ar-false? a) (ar-false? b)))))
; for all other uses of is
(xdef is (lambda args (pairwise ar-is2 args)))
(xdef err err)
(xdef nil 'nil)
(xdef t 't)
(define (all test seq)
(or (null? seq)
(and (test (car seq)) (all test (cdr seq)))))
(define (arc-list? x) (or (pair? x) (eqv? x 'nil) (eqv? x '())))
; Generic +: strings, lists, numbers.
; Return val has same type as first argument.
(xdef + (lambda args
(cond ((null? args) 0)
((char-or-string? (car args))
(apply string-append
(map (lambda (a) (ar-coerce a 'string))
args)))
((arc-list? (car args))
(ac-niltree (apply append (map ar-nil-terminate args))))
(#t (apply + args)))))
(define (char-or-string? x) (or (string? x) (char? x)))
(define (ar-+2 x y)
(cond ((char-or-string? x)
(string-append (ar-coerce x 'string) (ar-coerce y 'string)))
((and (arc-list? x) (arc-list? y))
(ac-niltree (append (ar-nil-terminate x) (ar-nil-terminate y))))
(#t (+ x y))))
(xdef - -)
(xdef * *)
(xdef / /)
(xdef mod modulo)
(xdef expt expt)
(xdef sqrt sqrt)
; generic comparison
(define (ar->2 x y)
(tnil (cond ((and (number? x) (number? y)) (> x y))
((and (string? x) (string? y)) (string>? x y))
((and (symbol? x) (symbol? y)) (string>? (symbol->string x)
(symbol->string y)))
((and (char? x) (char? y)) (char>? x y))
(#t (> x y)))))
(xdef > (lambda args (pairwise ar->2 args)))
(define (ar-<2 x y)
(tnil (cond ((and (number? x) (number? y)) (< x y))
((and (string? x) (string? y)) (string<? x y))
((and (symbol? x) (symbol? y)) (string<? (symbol->string x)
(symbol->string y)))
((and (char? x) (char? y)) (char<? x y))
(#t (< x y)))))
(xdef < (lambda args (pairwise ar-<2 args)))
(xdef len (lambda (x)
(cond ((string? x) (string-length x))
((hash-table? x) (hash-table-count x))
(#t (length (ar-nil-terminate x))))))
(define (ar-tagged? x)
(and (vector? x) (eq? (vector-ref x 0) 'tagged)))
(define (ar-tag type rep)
(cond ((eqv? (ar-type rep) type) rep)
(#t (vector 'tagged type rep))))
(xdef annotate ar-tag)
; (type nil) -> sym
(define (ar-type x)
(cond ((ar-tagged? x) (vector-ref x 1))
((pair? x) 'cons)
((symbol? x) 'sym)
((null? x) 'sym)
((procedure? x) 'fn)
((char? x) 'char)
((string? x) 'string)
((integer? x) 'int)
((number? x) 'num) ; unsure about this
((hash-table? x) 'table)
((output-port? x) 'output)
((input-port? x) 'input)
((tcp-listener? x) 'socket)
((exn? x) 'exception)
((thread? x) 'thread)
(#t (err "Type: unknown type" x))))
(xdef type ar-type)
(define (ar-rep x)
(if (ar-tagged? x)
(vector-ref x 2)
x))
(xdef rep ar-rep)
; currently rather a joke: returns interned symbols
(define ar-gensym-count 0)
(define (ar-gensym)
(set! ar-gensym-count (+ ar-gensym-count 1))
(string->symbol (string-append "gs" (number->string ar-gensym-count))))
(xdef uniq ar-gensym)
(xdef ccc call-with-current-continuation)
(xdef infile open-input-file)
(xdef outfile (lambda (f . args)
(open-output-file f
'text
(if (equal? args '(append))
'append
'truncate))))
(xdef instring open-input-string)
(xdef outstring open-output-string)
; use as general fn for looking inside things
(xdef inside get-output-string)
(xdef stdout current-output-port) ; should be a vars
(xdef stdin current-input-port)
(xdef stderr current-error-port)
(xdef call-w/stdout
(lambda (port thunk)
(parameterize ((current-output-port port)) (thunk))))
(xdef call-w/stdin
(lambda (port thunk)
(parameterize ((current-input-port port)) (thunk))))
(xdef readc (lambda str
(let ((c (read-char (if (pair? str)
(car str)
(current-input-port)))))
(if (eof-object? c) 'nil c))))
(xdef readb (lambda str
(let ((c (read-byte (if (pair? str)
(car str)
(current-input-port)))))
(if (eof-object? c) 'nil c))))
(xdef peekc (lambda str
(let ((c (peek-char (if (pair? str)
(car str)
(current-input-port)))))
(if (eof-object? c) 'nil c))))
(xdef writec (lambda (c . args)
(write-char c
(if (pair? args)
(car args)
(current-output-port)))
c))
(xdef writeb (lambda (b . args)
(write-byte b
(if (pair? args)
(car args)
(current-output-port)))
b))
(define explicit-flush #f)
(define (printwith f args)
(let ((port (if (> (length args) 1)
(cadr args)
(current-output-port))))
(when (pair? args)
(f (ac-denil (car args)) port))
(unless explicit-flush (flush-output port)))
'nil)
(xdef write (lambda args (printwith write args)))
(xdef disp (lambda args (printwith display args)))
; sread = scheme read. eventually replace by writing read
(xdef sread (lambda (p eof)
(let ((expr (read p)))
(if (eof-object? expr) eof expr))))
; these work in PLT but not scheme48
(define char->ascii char->integer)
(define ascii->char integer->char)
(define (iround x) (inexact->exact (round x)))
(define (ar-coerce x type . args)
(cond
((ar-tagged? x) (err "Can't coerce annotated object"))
((eqv? type (ar-type x)) x)
((char? x) (case type
((int) (char->ascii x))
((string) (string x))
((sym) (string->symbol (string x)))
(else (err "Can't coerce" x type))))
((integer? x) (case type
((num) x)
((char) (ascii->char x))
((string) (apply number->string x args))
(else (err "Can't coerce" x type))))
((number? x) (case type
((int) (iround x))
((char) (ascii->char (iround x)))
((string) (apply number->string x args))
(else (err "Can't coerce" x type))))
((string? x) (case type
((sym) (string->symbol x))
((cons) (ac-niltree (string->list x)))
((num) (or (apply string->number x args)
(err "Can't coerce" x type)))
((int) (let ((n (apply string->number x args)))
(if n
(iround n)
(err "Can't coerce" x type))))
(else (err "Can't coerce" x type))))
((pair? x) (case type
((string) (apply string-append
(map (lambda (y) (ar-coerce y 'string))
(ar-nil-terminate x))))
(else (err "Can't coerce" x type))))
((eqv? x 'nil) (case type
((string) "")
(else (err "Can't coerce" x type))))
((null? x) (case type
((string) "")
(else (err "Can't coerce" x type))))
((symbol? x) (case type
((string) (symbol->string x))
(else (err "Can't coerce" x type))))
(#t x)))
(xdef coerce ar-coerce)
(xdef open-socket (lambda (num) (tcp-listen num 50 #t)))
; the 2050 means http requests currently capped at 2 meg
; http://list.cs.brown.edu/pipermail/plt-scheme/2005-August/009414.html
(xdef socket-accept (lambda (s)
(let ((oc (current-custodian))
(nc (make-custodian)))
(current-custodian nc)
(call-with-values