-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
304 lines (256 loc) · 9.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms.functional as TF
import numpy as np
import os
import math
import random
import logging
import logging.handlers
from matplotlib import pyplot as plt
def set_seed(seed):
# for hash
os.environ['PYTHONHASHSEED'] = str(seed)
# for python and numpy
random.seed(seed)
np.random.seed(seed)
# for cpu gpu
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# for cudnn
cudnn.benchmark = False
cudnn.deterministic = True
def get_logger(name, log_dir):
'''
Args:
name(str): name of logger
log_dir(str): path of log
'''
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
info_name = os.path.join(log_dir, '{}.info.log'.format(name))
info_handler = logging.handlers.TimedRotatingFileHandler(info_name,
when='D',
encoding='utf-8')
info_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
info_handler.setFormatter(formatter)
logger.addHandler(info_handler)
return logger
def log_config_info(config, logger):
config_dict = config.__dict__
log_info = f'#----------Config info----------#'
logger.info(log_info)
for k, v in config_dict.items():
if k[0] == '_':
continue
else:
log_info = f'{k}: {v},'
logger.info(log_info)
def get_optimizer(config, model):
assert config.opt in ['Adadelta', 'Adagrad', 'Adam', 'AdamW', 'Adamax', 'ASGD', 'RMSprop', 'Rprop', 'SGD'], 'Unsupported optimizer!'
if config.opt == 'Adadelta':
return torch.optim.Adadelta(
model.parameters(),
lr = config.lr,
rho = config.rho,
eps = config.eps,
weight_decay = config.weight_decay
)
elif config.opt == 'Adagrad':
return torch.optim.Adagrad(
model.parameters(),
lr = config.lr,
lr_decay = config.lr_decay,
eps = config.eps,
weight_decay = config.weight_decay
)
elif config.opt == 'Adam':
return torch.optim.Adam(
model.parameters(),
lr = config.lr,
betas = config.betas,
eps = config.eps,
weight_decay = config.weight_decay,
amsgrad = config.amsgrad
)
elif config.opt == 'AdamW':
return torch.optim.AdamW(
model.parameters(),
lr = config.lr,
betas = config.betas,
eps = config.eps,
weight_decay = config.weight_decay,
amsgrad = config.amsgrad
)
elif config.opt == 'Adamax':
return torch.optim.Adamax(
model.parameters(),
lr = config.lr,
betas = config.betas,
eps = config.eps,
weight_decay = config.weight_decay
)
elif config.opt == 'ASGD':
return torch.optim.ASGD(
model.parameters(),
lr = config.lr,
lambd = config.lambd,
alpha = config.alpha,
t0 = config.t0,
weight_decay = config.weight_decay
)
elif config.opt == 'RMSprop':
return torch.optim.RMSprop(
model.parameters(),
lr = config.lr,
momentum = config.momentum,
alpha = config.alpha,
eps = config.eps,
centered = config.centered,
weight_decay = config.weight_decay
)
elif config.opt == 'Rprop':
return torch.optim.Rprop(
model.parameters(),
lr = config.lr,
etas = config.etas,
step_sizes = config.step_sizes,
)
elif config.opt == 'SGD':
return torch.optim.SGD(
model.parameters(),
lr = config.lr,
momentum = config.momentum,
weight_decay = config.weight_decay,
dampening = config.dampening,
nesterov = config.nesterov
)
else: # default opt is SGD
return torch.optim.SGD(
model.parameters(),
lr = 0.01,
momentum = 0.9,
weight_decay = 0.05,
)
def get_scheduler(config, optimizer):
assert config.sch in ['StepLR', 'MultiStepLR', 'ExponentialLR', 'CosineAnnealingLR', 'ReduceLROnPlateau',
'CosineAnnealingWarmRestarts', 'WP_MultiStepLR', 'WP_CosineLR'], 'Unsupported scheduler!'
if config.sch == 'StepLR':
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer,
step_size = config.step_size,
gamma = config.gamma,
last_epoch = config.last_epoch
)
elif config.sch == 'MultiStepLR':
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones = config.milestones,
gamma = config.gamma,
last_epoch = config.last_epoch
)
elif config.sch == 'ExponentialLR':
scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer,
gamma = config.gamma,
last_epoch = config.last_epoch
)
elif config.sch == 'CosineAnnealingLR':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max = config.T_max,
eta_min = config.eta_min,
last_epoch = config.last_epoch
)
elif config.sch == 'ReduceLROnPlateau':
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode = config.mode,
factor = config.factor,
patience = config.patience,
threshold = config.threshold,
threshold_mode = config.threshold_mode,
cooldown = config.cooldown,
min_lr = config.min_lr,
eps = config.eps
)
elif config.sch == 'CosineAnnealingWarmRestarts':
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer,
T_0 = config.T_0,
T_mult = config.T_mult,
eta_min = config.eta_min,
last_epoch = config.last_epoch
)
elif config.sch == 'WP_MultiStepLR':
lr_func = lambda epoch: epoch / config.warm_up_epochs if epoch <= config.warm_up_epochs else config.gamma**len(
[m for m in config.milestones if m <= epoch])
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_func)
elif config.sch == 'WP_CosineLR':
lr_func = lambda epoch: epoch / config.warm_up_epochs if epoch <= config.warm_up_epochs else 0.5 * (
math.cos((epoch - config.warm_up_epochs) / (config.epochs - config.warm_up_epochs) * math.pi) + 1)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_func)
return scheduler
def save_imgs(img, msk, msk_pred, i, save_path, datasets, threshold=0.5, test_data_name=None):
img = img.squeeze(0).permute(1,2,0).detach().cpu().numpy()
img = img / 255. if img.max() > 1.1 else img
if datasets == 'retinal':
msk = np.squeeze(msk, axis=0)
msk_pred = np.squeeze(msk_pred, axis=0)
else:
msk = np.where(np.squeeze(msk, axis=0) > 0.5, 1, 0)
msk_pred = np.where(np.squeeze(msk_pred, axis=0) > threshold, 1, 0)
plt.figure(figsize=(7,15))
plt.subplot(3,1,1)
plt.imshow(img)
plt.axis('off')
plt.subplot(3,1,2)
plt.imshow(msk, cmap= 'gray')
plt.axis('off')
plt.subplot(3,1,3)
plt.imshow(msk_pred, cmap = 'gray')
plt.axis('off')
if test_data_name is not None:
save_path = save_path + test_data_name + '_'
plt.savefig(save_path + str(i) +'.png')
plt.close()
class BCELoss(nn.Module):
def __init__(self):
super(BCELoss, self).__init__()
self.bceloss = nn.BCELoss()
def forward(self, pred, target):
size = pred.size(0)
pred_ = pred.view(size, -1)
target_ = target.view(size, -1)
return self.bceloss(pred_, target_)
class DiceLoss(nn.Module):
def __init__(self):
super(DiceLoss, self).__init__()
def forward(self, pred, target):
smooth = 1
size = pred.size(0)
pred_ = pred.view(size, -1)
target_ = target.view(size, -1)
intersection = pred_ * target_
dice_score = (2 * intersection.sum(1) + smooth)/(pred_.sum(1) + target_.sum(1) + smooth)
dice_loss = 1 - dice_score.sum()/size
return dice_loss
class BceDiceLoss(nn.Module):
def __init__(self, wb=1, wd=1):
super(BceDiceLoss, self).__init__()
self.bce = BCELoss()
self.dice = DiceLoss()
self.wb = wb
self.wd = wd
def forward(self, pred, target):
bceloss = self.bce(pred, target)
diceloss = self.dice(pred, target)
loss = self.wd * diceloss + self.wb * bceloss
return loss