forked from Drkun/ZSTCI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageFolder.py
148 lines (110 loc) · 4.96 KB
/
ImageFolder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch.utils.data as data
from PIL import Image
import os
import os.path
import sys
import pdb
import numpy as np
def has_file_allowed_extension(filename, extensions):
filename_lower = filename.lower()
return any(filename_lower.endswith(ext) for ext in extensions)
def is_image_file(filename):
return has_file_allowed_extension(filename, IMG_EXTENSIONS)
def make_dataset(dir, class_to_idx, extensions,num_instance_per_class):
images = []
dir = os.path.expanduser(dir)
for target in sorted(class_to_idx.keys()):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
if num_instance_per_class==0:
num = len(fnames)
else:
num = min(num_instance_per_class,len(fnames))
for fname in sorted(fnames)[:num]:
if has_file_allowed_extension(fname, extensions):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
return images
class DatasetFolder(data.Dataset):
def __init__(self, root, loader, extensions, transform=None, target_transform=None, index=None,num_instance_per_class=0):
classes, class_to_idx = self._find_classes(root)
np.random.seed(0)
list_permutaion = np.random.permutation( len(class_to_idx.items()))
class_to_idx = {k: list_permutaion[v] for k, v in class_to_idx.items() if list_permutaion[v] in index}
# class_to_idx = {k: v for k, v in class_to_idx.items() if v in index}
# pdb.set_trace()
samples = make_dataset(root, class_to_idx, extensions,num_instance_per_class)
# if index is not None:
# samples = [samples[i] for i in index]
if len(samples) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + root + "\n"
"Supported extensions are: " + ",".join(
extensions)))
self.root = root
self.loader = loader
self.extensions = extensions
self.classes = classes
self.class_to_idx = class_to_idx
self.samples = samples
self.targets = [s[1] for s in samples]
self.transform = transform
self.target_transform = target_transform
def _find_classes(self, dir):
if sys.version_info >= (3, 5):
# Faster and available in Python 3.5 and above
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def __getitem__(self, index):
path, target = self.samples[index]
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
return len(self.samples)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class ImageFolder(DatasetFolder):
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, index=None,num_instance_per_class=0):
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
transform=transform,
index=index,
target_transform=target_transform,
num_instance_per_class=num_instance_per_class)
self.imgs = self.samples