forked from avBuffer/Yolov5_tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_layer_feature_map.py
73 lines (60 loc) · 2.83 KB
/
show_layer_feature_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import cv2
import time
import numpy as np
import matplotlib.pyplot as plt
import core.utils as utils
import tensorflow as tf
from PIL import Image
if __name__ == '__main__':
argv = sys.argv
if len(argv) < 5:
print('usage: python show_layer_feature_map.py gpu_id pb_file img_file out_path')
sys.exit()
gpu_id = argv[1]
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
pb_file = argv[2]
if not os.path.exists(pb_file):
print('pb_file=%s not exist' % pb_file)
sys.exit()
img_file = argv[3]
if not os.path.exists(img_file):
print('img_file=%s not exist' % img_file)
sys.exit()
out_path = argv[4]
if not os.path.exists(out_path):
os.makedirs(out_path)
print('show_layer_feature_map gpu_id=%s, pb_file=%s, img_file=%s, out_path=%s' %
(gpu_id, pb_file, img_file, out_path))
input_size = 416
img = cv2.imread(img_file)
image_data = utils.image_preporcess(np.copy(img), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
graph = tf.Graph()
return_elements = ['input/input_data:0', 'pred_sbbox/concat_2:0', 'pred_mbbox/concat_2:0', 'pred_lbbox/concat_2:0']
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
with tf.Session(graph=graph) as sess:
tensor_names = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node]
conv_layer_names = []
for idx, tensor_name in enumerate(tensor_names):
if 'Conv2D' in tensor_name:
conv_layer_names.append(tensor_name)
print('conv_layer_names=', conv_layer_names)
for idx, layer_name in enumerate(conv_layer_names):
conv = sess.graph.get_tensor_by_name('%s:0' % layer_name)
features = np.array(conv.eval({return_tensors[0]: image_data}))
print('\n[%d/%d] %s' % (idx, len(conv_layer_names), layer_name), ' features.shape=', features.shape)
out_layer_path = os.path.join(out_path, '%s-%sx%sx%s' % (layer_name.replace('/', '_'), str(features.shape[1]),
str(features.shape[2]), str(features.shape[3])))
if not os.path.exists(out_layer_path):
os.makedirs(out_layer_path)
plt.figure(idx, figsize=(10, 10))
for jdx in range(features.shape[3]):
plt.matshow(features[0, :, :, jdx], cmap=plt.cm.gray, fignum=idx) #remove cmap=plt.cm.gray to show RGBA image
plt.title('' + layer_name + '_' + str(jdx))
out_file = os.path.join(out_layer_path, 'img_%s.jpg' % str(jdx))
plt.savefig(out_file)
print('idx=', idx, ' layer_name=', layer_name, ' jdx=', jdx, ' out_file=', out_file)