forked from avBuffer/Yolov5_tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
128 lines (103 loc) · 5.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import cv2
import numpy as np
import core.utils as utils
from PIL import Image
import tensorflow
if tensorflow.__version__.startswith('1.'):
import tensorflow as tf
else:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
if __name__ == '__main__':
"""
argv = sys.argv
if len(argv) < 5:
print('usage: python test.py gpu_id pb_file img_path_file out_path')
sys.exit()
"""
gpu_id = '0' #argv[1]
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
pb_file = 'ckpts/social_yolov3_test-loss=3.2020.ckpt-198.pb' #argv[2]
if not os.path.exists(pb_file):
print('pb_file=%s not exist' % pb_file)
sys.exit()
img_path_file = 'D:/datasets/Social/test' #argv[3]
if not os.path.exists(img_path_file):
print('img_path_file=%s not exist' % img_path_file)
sys.exit()
out_path = 'D:/datasets/Social/out' #argv[4]
if not os.path.exists(out_path):
os.makedirs(out_path)
print('test gpu_id=%s, pb_file=%s, img_file=%s, out_path=%s' % (gpu_id, pb_file, img_path_file, out_path))
num_classes = 1
input_size = 416
score_thresh = 0.6
iou_type = 'iou' #yolov4:diou, else giou
iou_thresh = 0.3
graph = tf.Graph()
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(graph=graph, config=config) as sess:
if os.path.isfile(img_path_file):
img = cv2.imread(img_path_file)
img_size = img.shape[:2]
image_data = utils.image_preporcess(np.copy(img), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
pred_sbbox, pred_mbbox, pred_lbbox = sess.run([return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)), np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, img_size, input_size, score_thresh)
bboxes = utils.nms(bboxes, iou_type, iou_thresh, method='nms')
if len(bboxes) > 0:
image = utils.draw_bbox(img, bboxes)
#image = Image.fromarray(image)
#image.show()
out_img = np.asarray(image)
score = bboxes[0][4]
file_path, file_name = os.path.split(img_path_file)
file, postfix = os.path.splitext(file_name)
out_file = os.path.join(out_path, file + '_%.6f' % (score) + postfix)
cv2.imwrite(out_file, out_img)
print('img_path_file=', img_path_file, 'out_file=', out_file)
elif os.path.isdir(img_path_file):
img_files = os.listdir(img_path_file)
for idx, img_file in enumerate(img_files):
in_img_file = os.path.join(img_path_file, img_file)
#print('idx=', idx, 'in_img_file=', in_img_file)
if not os.path.exists(in_img_file):
print('idx=', idx, 'in_img_file=', in_img_file, ' not exist')
continue
img = cv2.imread(in_img_file)
if img is None:
print('idx=', idx, 'in_img_file=', in_img_file, ' read error')
continue
img_size = img.shape[:2]
image_data = utils.image_preporcess(np.copy(img), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
pred_sbbox, pred_mbbox, pred_lbbox = sess.run([return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, img_size, input_size, score_thresh)
bboxes = utils.nms(bboxes, iou_type, iou_thresh, method='nms')
if len(bboxes) > 0:
image = utils.draw_bbox(img, bboxes)
#image = Image.fromarray(image)
#image.show()
out_img = np.asarray(image)
score = bboxes[0][4]
file_path, file_name = os.path.split(in_img_file)
file, postfix = os.path.splitext(file_name)
out_file = os.path.join(out_path, file + '_%.6f' % (score) + postfix)
cv2.imwrite(out_file, out_img)
print('idx=', idx, 'in_img_file=', in_img_file, 'out_file=', out_file)
else:
print('img_path_file=%s is error' % img_path_file)