-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathevaluate.py
102 lines (78 loc) · 3.34 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import math
from scipy.spatial.transform import Rotation as s_R
#step:
#1. saving the results and ground files in the current folder.
#2. renaming the result file names according to the bag names. i.e. if the R1M1.bag is used, renaming the
# result file name as R1M1_rtk.csv (for RTK positioning) or R1M1_spp.csv (for SPP positioning).
#3. run python evaluate.py
def plot_error(ground_filename, data_filename, align=False, label="",
t_name="", is_rtk=False):
try:
data = pd.read_csv(data_filename)
except Exception as ret:
print(ret)
return
data[np.isnan(data)] = 1
# calculating the prism position according to the antenna position and the body orientation.
data[["px", "py", "pz"]] -= s_R.from_euler("zyx", data[["yaw", "pitch", "roll"]].values,
degrees=True).as_matrix() @ ptg
data_time = data["time"].values / 1e9
data_values = data[["px", "py", "pz"]].values
ground = pd.read_csv(ground_filename).iloc[10:]
errors = []
ground_values = ground[["px", "py", "pz"]].values
diff_p = ground_values[1:] - ground_values[:-1]
travel_distance = np.sqrt(diff_p[:, 0] ** 2 + diff_p[:, 1] ** 2 + diff_p[:, 2] ** 2)
travel_distance = np.concatenate([np.array([0]), travel_distance])
travel_distance = np.cumsum(travel_distance)
travel_distance_error = []
for i in range(len(ground)):
g = ground[["px", "py", "pz"]].iloc[i].values
ground_time = ground["time"].iloc[i]
index = np.abs(ground_time - data_time).argmin()
if np.abs(ground_time - data_time).min() > 1/400:
print(ground_time, "not found")
continue
tmp = data_values[index] - g
errors.append(tmp)
travel_distance_error.append(travel_distance[i])
errors = np.array(errors)
if align:
errors -= errors.mean(axis=0)
plt.plot(np.array(travel_distance_error), errors[:, 0], label="x")
plt.plot(np.array(travel_distance_error), errors[:, 1], label="y")
plt.plot(np.array(travel_distance_error), errors[:, 2], label="z")
plt.show()
if not is_rtk:
global RMSE_PLANE,RMSE_HEIGHT
RMSE_HEIGHT[t_name][label] = np.sqrt((errors[:, 2] ** 2).mean())
RMSE_PLANE[t_name][label] = np.sqrt((errors[:, 0] ** 2 + errors[:, 1] ** 2).mean())
else:
global MAE
MAE[t_name][label] = np.sqrt((errors[:, 0] ** 2 + errors[:, 1] ** 2 + errors[:, 2] ** 2)).mean()
#imu-prism calibration
ptg = np.array([0.04128228786, -0.02040929358, -0.1396607903])
files = ["R1M1", "R1M2", "R2M1", "R2M2"]
RMSE_HEIGHT = {"R1M1":{},"R1M2":{},"R2M1":{},"R2M2":{}}
RMSE_PLANE = {"R1M1":{},"R1M2":{},"R2M1":{},"R2M2":{}}
for f in files:
plot_error( f + "_ground.csv",
f + "_spp.csv",
align=True, label="Proposed",
t_name=f)
print(" plane RMSE:")
print(pd.DataFrame(RMSE_PLANE))
print(" height RMSE:")
print(pd.DataFrame(RMSE_HEIGHT))
MAE={"R1M1":{},"R1M2":{},"R2M1":{},"R2M2":{}}
for f in files:
plot_error( f + "_ground.csv",
f + "_rtk.csv",
is_rtk=True,
t_name=f,
label='Proposed')
print(" MAE:")
print(pd.DataFrame(MAE))