diff --git a/docs/anime_video_model.md b/docs/anime_video_model.md index ba211acfa..0b0ce69e0 100644 --- a/docs/anime_video_model.md +++ b/docs/anime_video_model.md @@ -36,7 +36,12 @@ The following are some demos (best view in the full screen mode). # download model wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P realesrgan/weights # inference -python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 +python inference_realesrgan_video.py -i inputs/video/onepiece_demo.mp4 -n realesr-animevideov3 -s 2 --suffix outx2 --stream +``` +```console +Usage: +--stream with this option, the enhanced frames are sent directly to a ffmpeg stream, + avoiding storing large (usually tens of GB) intermediate results. ``` ### NCNN Executable File diff --git a/inference_realesrgan_video.py b/inference_realesrgan_video.py index 300839741..d0da9fdb4 100644 --- a/inference_realesrgan_video.py +++ b/inference_realesrgan_video.py @@ -1,6 +1,8 @@ import argparse +import cv2 import glob import mimetypes +import numpy as np import os import queue import shutil @@ -13,6 +15,192 @@ from realesrgan.archs.srvgg_arch import SRVGGNetCompact +def get_frames(args, extract_frames=False): + # input can be a video file / a folder of frames / an image + is_video = False + if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file + is_video = True + video_name = os.path.splitext(os.path.basename(args.input))[0] + if extract_frames: + frame_folder = os.path.join('tmp_frames', video_name) + os.makedirs(frame_folder, exist_ok=True) + # use ffmpeg to extract frames + os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png') + # get image path list + paths = sorted(glob.glob(os.path.join(frame_folder, '*'))) + else: + paths = [] + # get input video fps + if args.fps is None: + import ffmpeg + probe = ffmpeg.probe(args.input) + video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video'] + args.fps = eval(video_streams[0]['avg_frame_rate']) + elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file + paths = [args.input] + else: + paths = sorted(glob.glob(os.path.join(args.input, '*'))) + assert len(paths) > 0, 'the input folder is empty' + + if args.fps is None: + args.fps = 24 + + return is_video, paths + + +def inference_stream(args, upsampler, face_enhancer): + try: + import ffmpeg + except ImportError: + import pip + pip.main(['install', '--user', 'ffmpeg-python']) + import ffmpeg + + is_video, paths = get_frames(args, extract_frames=False) + video_name = os.path.splitext(os.path.basename(args.input))[0] + video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4') + + # decoder + if is_video: + # get height and width + probe = ffmpeg.probe(args.input) + video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video'] + width = video_streams[0]['width'] + height = video_streams[0]['height'] + + # set up frame decoder + decoder = ( + ffmpeg.input(args.input).output('pipe:', format='rawvideo', pix_fmt='rgb24', loglevel='warning').run_async( + pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)) + else: + from PIL import Image + tmp_img = Image.open(paths[0]) + width, height = tmp_img.size + idx = 0 + + out_width, out_height = int(width * args.outscale), int(height * args.outscale) + if out_height > 2160: + print('You are generating video that is larger than 4K, which will be very slow due to IO speed.', + 'We highly recommend to decrease the outscale(aka, -s).') + # encoder + if is_video: + audio = ffmpeg.input(args.input).audio + encoder = ( + ffmpeg.input( + 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}', framerate=args.fps).output( + audio, video_save_path, pix_fmt='yuv420p', vcodec='libx264', loglevel='info', + acodec='copy').overwrite_output().run_async(pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)) + else: + encoder = ( + ffmpeg.input( + 'pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{out_width}x{out_height}', + framerate=args.fps).output(video_save_path, pix_fmt='yuv420p', vcodec='libx264', + loglevel='info').overwrite_output().run_async( + pipe_stdin=True, pipe_stdout=True, cmd=args.ffmpeg_bin)) + + while True: + if is_video: + img_bytes = decoder.stdout.read(width * height * 3) # 3 bytes for one pixel + if not img_bytes: + break + img = np.frombuffer(img_bytes, np.uint8).reshape([height, width, 3]) + else: + if idx >= len(paths): + break + img = cv2.imread(paths[idx]) + idx += 1 + + try: + if args.face_enhance: + _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) + else: + output, _ = upsampler.enhance(img, outscale=args.outscale) + except RuntimeError as error: + print('Error', error) + print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') + else: + output = output.astype(np.uint8).tobytes() + encoder.stdin.write(output) + + torch.cuda.synchronize() + + if is_video: + decoder.stdin.close() + decoder.wait() + encoder.stdin.close() + encoder.wait() + + +def inference_frames(args, upsampler, face_enhancer): + is_video, paths = get_frames(args, extract_frames=True) + video_name = os.path.splitext(os.path.basename(args.input))[0] + + # for saving restored frames + save_frame_folder = os.path.join(args.output, video_name, 'frames_tmpout') + os.makedirs(save_frame_folder, exist_ok=True) + + timer = AvgTimer() + timer.start() + pbar = tqdm(total=len(paths), unit='frame', desc='inference') + # set up prefetch reader + reader = PrefetchReader(paths, num_prefetch_queue=4) + reader.start() + + que = queue.Queue() + consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)] + for consumer in consumers: + consumer.start() + + for idx, (path, img) in enumerate(zip(paths, reader)): + imgname, extension = os.path.splitext(os.path.basename(path)) + if len(img.shape) == 3 and img.shape[2] == 4: + img_mode = 'RGBA' + else: + img_mode = None + + try: + if args.face_enhance: + _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) + else: + output, _ = upsampler.enhance(img, outscale=args.outscale) + except RuntimeError as error: + print('Error', error) + print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') + + else: + if args.ext == 'auto': + extension = extension[1:] + else: + extension = args.ext + if img_mode == 'RGBA': # RGBA images should be saved in png format + extension = 'png' + save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}') + + que.put({'output': output, 'save_path': save_path}) + + pbar.update(1) + torch.cuda.synchronize() + timer.record() + avg_fps = 1. / (timer.get_avg_time() + 1e-7) + pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}') + + for _ in range(args.consumer): + que.put('quit') + for consumer in consumers: + consumer.join() + pbar.close() + + # merge frames to video + video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4') + os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}' + f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}') + # delete tmp file + shutil.rmtree(save_frame_folder) + frame_folder = os.path.join('tmp_frames', video_name) + if os.path.isdir(frame_folder): + shutil.rmtree(frame_folder) + + def main(): """Inference demo for Real-ESRGAN. It mainly for restoring anime videos. @@ -39,6 +227,8 @@ def main(): '--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).') parser.add_argument('--fps', type=float, default=None, help='FPS of the output video') parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers') + parser.add_argument('--stream', action='store_true') + parser.add_argument('--ffmpeg_bin', type=str, default='ffmpeg', help='The path to ffmpeg') parser.add_argument( '--alpha_upsampler', @@ -52,6 +242,8 @@ def main(): help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs') args = parser.parse_args() + args.input = args.input.rstrip('/').rstrip('\\') + # ---------------------- determine models according to model names ---------------------- # args.model_name = args.model_name.split('.pth')[0] if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model @@ -84,6 +276,11 @@ def main(): pre_pad=args.pre_pad, half=not args.fp32) + if 'anime' in args.model_name and args.face_enhance: + print('face_enhance is not supported in anime models, we turned this option off for you. ' + 'if you insist on turning it on, please manually comment the relevant lines of code.') + args.face_enhance = False + if args.face_enhance: # Use GFPGAN for face enhancement from gfpgan import GFPGANer face_enhancer = GFPGANer( @@ -92,93 +289,15 @@ def main(): arch='clean', channel_multiplier=2, bg_upsampler=upsampler) - os.makedirs(args.output, exist_ok=True) - # for saving restored frames - save_frame_folder = os.path.join(args.output, 'frames_tmpout') - os.makedirs(save_frame_folder, exist_ok=True) - - # input can be a video file / a folder of frames / an image - if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file - video_name = os.path.splitext(os.path.basename(args.input))[0] - frame_folder = os.path.join('tmp_frames', video_name) - os.makedirs(frame_folder, exist_ok=True) - # use ffmpeg to extract frames - os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png') - # get image path list - paths = sorted(glob.glob(os.path.join(frame_folder, '*'))) - # get input video fps - if args.fps is None: - - import ffmpeg - probe = ffmpeg.probe(args.input) - video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video'] - args.fps = eval(video_streams[0]['avg_frame_rate']) - elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file - paths = [args.input] - video_name = 'video' else: - paths = sorted(glob.glob(os.path.join(args.input, '*'))) - video_name = 'video' + face_enhancer = None - timer = AvgTimer() - timer.start() - pbar = tqdm(total=len(paths), unit='frame', desc='inference') - # set up prefetch reader - reader = PrefetchReader(paths, num_prefetch_queue=4) - reader.start() - - que = queue.Queue() - consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)] - for consumer in consumers: - consumer.start() - - for idx, (path, img) in enumerate(zip(paths, reader)): - imgname, extension = os.path.splitext(os.path.basename(path)) - if len(img.shape) == 3 and img.shape[2] == 4: - img_mode = 'RGBA' - else: - img_mode = None - - try: - if args.face_enhance: - _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) - else: - output, _ = upsampler.enhance(img, outscale=args.outscale) - except RuntimeError as error: - print('Error', error) - print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') - - else: - if args.ext == 'auto': - extension = extension[1:] - else: - extension = args.ext - if img_mode == 'RGBA': # RGBA images should be saved in png format - extension = 'png' - save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}') - - que.put({'output': output, 'save_path': save_path}) - - pbar.update(1) - torch.cuda.synchronize() - timer.record() - avg_fps = 1. / (timer.get_avg_time() + 1e-7) - pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}') - - for _ in range(args.consumer): - que.put('quit') - for consumer in consumers: - consumer.join() - pbar.close() + os.makedirs(args.output, exist_ok=True) - # merge frames to video - video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4') - os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}' - f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}') - # delete tmp file - shutil.rmtree(save_frame_folder) - if os.path.isdir(frame_folder): - shutil.rmtree(frame_folder) + if args.stream: + inference_stream(args, upsampler, face_enhancer) + else: + inference_frames(args, upsampler, face_enhancer) if __name__ == '__main__':