-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
850 lines (700 loc) · 30.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
"""SGRAF model"""
import math
from collections import OrderedDict
import numpy as np
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torch.nn.utils.clip_grad import clip_grad_norm_
from sklearn.mixture import GaussianMixture
def l1norm(X, dim, eps=1e-8):
"""L1-normalize columns of X"""
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
X = torch.div(X, norm)
return X
def l2norm(X, dim=-1, eps=1e-8):
"""L2-normalize columns of X"""
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
X = torch.div(X, norm)
return X
def cosine_sim(x1, x2, dim=-1, eps=1e-8):
"""Returns cosine similarity between x1 and x2, computed along dim."""
w12 = torch.sum(x1 * x2, dim)
w1 = torch.norm(x1, 2, dim)
w2 = torch.norm(x2, 2, dim)
return (w12 / (w1 * w2).clamp(min=eps)).squeeze()
class EncoderImage(nn.Module):
"""
Build local region representations by common-used FC-layer.
Args: - images: raw local detected regions, shape: (batch_size, 36, 2048).
Returns: - img_emb: finial local region embeddings, shape: (batch_size, 36, 1024).
"""
def __init__(self, img_dim, embed_size, no_imgnorm=False):
super(EncoderImage, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer"""
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
# assuming that the precomputed features are already l2-normalized
img_emb = self.fc(images)
# normalize in the joint embedding space
if not self.no_imgnorm:
img_emb = l2norm(img_emb, dim=-1)
return img_emb
def load_state_dict(self, state_dict):
"""Overwrite the default one to accept state_dict from Full model"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImage, self).load_state_dict(new_state)
class EncoderText(nn.Module):
"""
Build local word representations by common-used Bi-GRU or GRU.
Args: - images: raw local word ids, shape: (batch_size, L).
Returns: - img_emb: final local word embeddings, shape: (batch_size, L, 1024).
"""
def __init__(
self,
vocab_size,
word_dim,
embed_size,
num_layers,
use_bi_gru=False,
no_txtnorm=False,
):
super(EncoderText, self).__init__()
self.embed_size = embed_size
self.no_txtnorm = no_txtnorm
# word embedding
self.embed = nn.Embedding(vocab_size, word_dim)
self.dropout = nn.Dropout(0.4)
# caption embedding
self.use_bi_gru = use_bi_gru
self.cap_rnn = nn.GRU(
word_dim, embed_size, num_layers, batch_first=True, bidirectional=use_bi_gru
)
self.init_weights()
def init_weights(self):
self.embed.weight.data.uniform_(-0.1, 0.1)
def forward(self, captions, lengths):
"""Handles variable size captions"""
# embed word ids to vectors
cap_emb = self.embed(captions)
cap_emb = self.dropout(cap_emb)
# pack the caption
packed = pack_padded_sequence(
cap_emb, lengths, batch_first=True, enforce_sorted=False
)
# forward propagate RNN
out, _ = self.cap_rnn(packed)
# reshape output to (batch_size, hidden_size)
cap_emb, _ = pad_packed_sequence(out, batch_first=True)
if self.use_bi_gru:
cap_emb = (
cap_emb[:, :, : cap_emb.size(2) // 2]
+ cap_emb[:, :, cap_emb.size(2) // 2 :]
) / 2
# normalization in the joint embedding space
if not self.no_txtnorm:
cap_emb = l2norm(cap_emb, dim=-1)
return cap_emb
class VisualSA(nn.Module):
"""
Build global image representations by self-attention.
Args: - local: local region embeddings, shape: (batch_size, 36, 1024)
- raw_global: raw image by averaging regions, shape: (batch_size, 1024)
Returns: - new_global: final image by self-attention, shape: (batch_size, 1024).
"""
def __init__(self, embed_dim, dropout_rate, num_region):
super(VisualSA, self).__init__()
self.embedding_local = nn.Sequential(
nn.Linear(embed_dim, embed_dim),
nn.BatchNorm1d(num_region),
nn.Tanh(),
nn.Dropout(dropout_rate),
)
self.embedding_global = nn.Sequential(
nn.Linear(embed_dim, embed_dim),
nn.BatchNorm1d(embed_dim),
nn.Tanh(),
nn.Dropout(dropout_rate),
)
self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1))
self.init_weights()
self.softmax = nn.Softmax(dim=1)
def init_weights(self):
for embeddings in self.children():
for m in embeddings:
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, local, raw_global):
# compute embedding of local regions and raw global image
l_emb = self.embedding_local(local)
g_emb = self.embedding_global(raw_global)
# compute the normalized weights, shape: (batch_size, 36)
g_emb = g_emb.unsqueeze(1).repeat(1, l_emb.size(1), 1)
common = l_emb.mul(g_emb)
weights = self.embedding_common(common).squeeze(2)
weights = self.softmax(weights)
# compute final image, shape: (batch_size, 1024)
new_global = (weights.unsqueeze(2) * local).sum(dim=1)
new_global = l2norm(new_global, dim=-1)
return new_global
class TextSA(nn.Module):
"""
Build global text representations by self-attention.
Args: - local: local word embeddings, shape: (batch_size, L, 1024)
- raw_global: raw text by averaging words, shape: (batch_size, 1024)
Returns: - new_global: final text by self-attention, shape: (batch_size, 1024).
"""
def __init__(self, embed_dim, dropout_rate):
super(TextSA, self).__init__()
self.embedding_local = nn.Sequential(
nn.Linear(embed_dim, embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)
)
self.embedding_global = nn.Sequential(
nn.Linear(embed_dim, embed_dim), nn.Tanh(), nn.Dropout(dropout_rate)
)
self.embedding_common = nn.Sequential(nn.Linear(embed_dim, 1))
self.init_weights()
self.softmax = nn.Softmax(dim=1)
def init_weights(self):
for embeddings in self.children():
for m in embeddings:
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, local, raw_global):
# compute embedding of local words and raw global text
l_emb = self.embedding_local(local)
g_emb = self.embedding_global(raw_global)
# compute the normalized weights, shape: (batch_size, L)
g_emb = g_emb.unsqueeze(1).repeat(1, l_emb.size(1), 1)
common = l_emb.mul(g_emb)
weights = self.embedding_common(common).squeeze(2)
weights = self.softmax(weights)
# compute final text, shape: (batch_size, 1024)
new_global = (weights.unsqueeze(2) * local).sum(dim=1)
new_global = l2norm(new_global, dim=-1)
return new_global
class GraphReasoning(nn.Module):
"""
Perform the similarity graph reasoning with a full-connected graph
Args: - sim_emb: global and local alignments, shape: (batch_size, L+1, 256)
Returns; - sim_sgr: reasoned graph nodes after several steps, shape: (batch_size, L+1, 256)
"""
def __init__(self, sim_dim):
super(GraphReasoning, self).__init__()
self.graph_query_w = nn.Linear(sim_dim, sim_dim)
self.graph_key_w = nn.Linear(sim_dim, sim_dim)
self.sim_graph_w = nn.Linear(sim_dim, sim_dim)
self.relu = nn.ReLU()
self.init_weights()
def forward(self, sim_emb):
sim_query = self.graph_query_w(sim_emb)
sim_key = self.graph_key_w(sim_emb)
sim_edge = torch.softmax(torch.bmm(sim_query, sim_key.permute(0, 2, 1)), dim=-1)
sim_sgr = torch.bmm(sim_edge, sim_emb)
sim_sgr = self.relu(self.sim_graph_w(sim_sgr))
return sim_sgr
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class AttentionFiltration(nn.Module):
"""
Perform the similarity Attention Filtration with a gate-based attention
Args: - sim_emb: global and local alignments, shape: (batch_size, L+1, 256)
Returns; - sim_saf: aggregated alignment after attention filtration, shape: (batch_size, 256)
"""
def __init__(self, sim_dim):
super(AttentionFiltration, self).__init__()
self.attn_sim_w = nn.Linear(sim_dim, 1)
self.bn = nn.BatchNorm1d(1)
self.init_weights()
def forward(self, sim_emb):
sim_attn = l1norm(
torch.sigmoid(self.bn(self.attn_sim_w(sim_emb).permute(0, 2, 1))), dim=-1
)
sim_saf = torch.matmul(sim_attn, sim_emb)
sim_saf = l2norm(sim_saf.squeeze(1), dim=-1)
return sim_saf
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class EncoderSimilarity(nn.Module):
"""
Compute the image-text similarity by SGR, SAF, AVE
Args: - img_emb: local region embeddings, shape: (batch_size, 36, 1024)
- cap_emb: local word embeddings, shape: (batch_size, L, 1024)
Returns:
- sim_all: final image-text similarities, shape: (batch_size, batch_size).
"""
def __init__(self, embed_size, sim_dim, module_name="AVE", sgr_step=3):
super(EncoderSimilarity, self).__init__()
self.module_name = module_name
self.v_global_w = VisualSA(embed_size, 0.4, 36)
self.t_global_w = TextSA(embed_size, 0.4)
self.sim_tranloc_w = nn.Linear(embed_size, sim_dim)
self.sim_tranglo_w = nn.Linear(embed_size, sim_dim)
self.sim_eval_w = nn.Linear(sim_dim, 1)
self.sigmoid = nn.Sigmoid()
if module_name == "SGR":
self.SGR_module = nn.ModuleList(
[GraphReasoning(sim_dim) for i in range(sgr_step)]
)
elif module_name == "SAF":
self.SAF_module = AttentionFiltration(sim_dim)
else:
raise ValueError("Invalid module")
self.init_weights()
def glo_emb(self,img_emb, cap_emb, cap_lens):
cap_emb_all = []
n_image = img_emb.size(0)
n_caption = cap_emb.size(0)
# get enhanced global images by self-attention
img_ave = torch.mean(img_emb, 1)
#img_glo = self.v_global_w(img_emb, img_ave) #(batch_size, 1024)
img_glo = img_ave
for i in range(n_caption):
# get the i-th sentence
n_word = cap_lens[i]
cap_i = cap_emb[i, :n_word, :].unsqueeze(0)
# get enhanced global i-th text by self-attention
cap_ave_i = torch.mean(cap_i, 1)
#cap_glo_i = self.t_global_w(cap_i, cap_ave_i) #(batch_size, 1024)
cap_emb_all.append(cap_ave_i)
# (n_image, n_caption)
cap_emb_all = torch.cat(cap_emb_all, 0)
return img_glo,cap_emb_all
def forward(self, img_emb, cap_emb, cap_lens):
sim_all = []
n_image = img_emb.size(0)
n_caption = cap_emb.size(0)
# get enhanced global images by self-attention
img_ave = torch.mean(img_emb, 1)
img_glo = self.v_global_w(img_emb, img_ave)
for i in range(n_caption):
# get the i-th sentence
n_word = cap_lens[i]
cap_i = cap_emb[i, :n_word, :].unsqueeze(0)
cap_i_expand = cap_i.repeat(n_image, 1, 1)
# get enhanced global i-th text by self-attention
cap_ave_i = torch.mean(cap_i, 1)
cap_glo_i = self.t_global_w(cap_i, cap_ave_i)
# local-global alignment construction
Context_img = SCAN_attention(cap_i_expand, img_emb, smooth=9.0)
sim_loc = torch.pow(torch.sub(Context_img, cap_i_expand), 2)
sim_loc = l2norm(self.sim_tranloc_w(sim_loc), dim=-1)
sim_glo = torch.pow(torch.sub(img_glo, cap_glo_i), 2)
sim_glo = l2norm(self.sim_tranglo_w(sim_glo), dim=-1)
# concat the global and local alignments
sim_emb = torch.cat([sim_glo.unsqueeze(1), sim_loc], 1)
# compute the final similarity vector
if self.module_name == "SGR":
for module in self.SGR_module:
sim_emb = module(sim_emb)
sim_vec = sim_emb[:, 0, :]
else:
sim_vec = self.SAF_module(sim_emb)
# compute the final similarity score
sim_i = self.sigmoid(self.sim_eval_w(sim_vec))
sim_all.append(sim_i)
# (n_image, n_caption)
sim_all = torch.cat(sim_all, 1)
return sim_all
def init_weights(self):
for m in self.children():
if isinstance(m, nn.Linear):
r = np.sqrt(6.0) / np.sqrt(m.in_features + m.out_features)
m.weight.data.uniform_(-r, r)
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def SCAN_attention(query, context, smooth, eps=1e-8):
"""
query: (n_context, queryL, d)
context: (n_context, sourceL, d)
"""
# --> (batch, d, queryL)
queryT = torch.transpose(query, 1, 2)
# (batch, sourceL, d)(batch, d, queryL)
# --> (batch, sourceL, queryL)
attn = torch.bmm(context, queryT)
attn = nn.LeakyReLU(0.1)(attn)
attn = l2norm(attn, 2)
# --> (batch, queryL, sourceL)
attn = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, queryL, sourceL
attn = F.softmax(attn * smooth, dim=2)
# --> (batch, sourceL, queryL)
attnT = torch.transpose(attn, 1, 2).contiguous()
# --> (batch, d, sourceL)
contextT = torch.transpose(context, 1, 2)
# (batch x d x sourceL)(batch x sourceL x queryL)
# --> (batch, d, queryL)
weightedContext = torch.bmm(contextT, attnT)
# --> (batch, queryL, d)
weightedContext = torch.transpose(weightedContext, 1, 2)
weightedContext = l2norm(weightedContext, dim=-1)
return weightedContext
class ContrastiveLoss(nn.Module):
"""
Compute contrastive loss
"""
def __init__(self, margin=0,warmup_rate=0.5):
super(ContrastiveLoss, self).__init__()
self.margin = margin
self.warmup_rate = warmup_rate
def forward(
self,
scores,
hard_negative=True,
labels=None,
soft_margin="linear",
mode="train",
noise_tem = 0.9,
):
# compute image-sentence score matrix
diagonal = scores.diag().view(scores.size(0), 1)
d1 = diagonal.expand_as(scores)
d2 = diagonal.t().expand_as(scores)
if labels is None:
margin = self.margin
elif soft_margin == "linear":
margin = self.margin * labels
elif soft_margin == "exponential":
s = (torch.pow(10, labels) - 1) / 9
margin = self.margin * s
elif soft_margin == "sin":
s = torch.sin(math.pi * labels - math.pi / 2) / 2 + 1 / 2
margin = self.margin * s
# compare every diagonal score to scores in its column: caption retrieval
#cost_s = (margin + scores - d1).clamp(min=0)
# compare every diagonal score to scores in its row: image retrieval
cost_im = (margin + scores - d2).clamp(min=0)
if labels is not None and soft_margin == "exponential":
margin = margin.t()
# compare every diagonal score to scores in its column: caption retrieval
cost_s = (margin + scores - d1).clamp(min=0)
# clear diagonals
mask = torch.eye(scores.size(0)) > 0.5
mask = mask.to(cost_s.device)
cost_s, cost_im = cost_s.masked_fill_(mask, 0), cost_im.masked_fill_(mask, 0)
# maximum and mean
cost_s_max, cost_im_max = cost_s.max(1)[0], cost_im.max(0)[0]
cost_s_mean, cost_im_mean = cost_s.mean(1), cost_im.mean(0)
if mode == "predict":
p = margin - (cost_s_mean + cost_im_mean) / 2
p = p.clamp(min=0, max=margin)
idx = torch.argsort(p)
ratio = scores.size(0) // 10 + 1
p = p / torch.mean(p[idx[-ratio:]])
return p
if mode == "predict_clean":
p = margin - (cost_s_mean + cost_im_mean) / 2
p = p.clamp(min=0, max=margin)
idx = torch.argsort(p)
ratio = scores.size(0) // 10 + 1
#p = p / torch.mean(p[idx[-ratio:]])
return idx[-ratio:],idx[:-ratio]
elif mode == "warmup_sele":
all_loss = cost_s_mean + cost_im_mean
y = all_loss.topk(k=int(scores.size(0)*self.warmup_rate), dim=0, largest=False, sorted=True)
index = torch.zeros(scores.size(0)).cuda()
index[y[1]]=1
all_loss = all_loss*index
#选择clean样本
return all_loss.sum()
elif mode == "noise_hard":
#labels
index = labels>noise_tem
if hard_negative:
return ((cost_s_max + cost_im_max)*index).sum()
else:
return ((cost_s_mean+ cost_im_mean)*index).sum()
elif mode =='warmup':
return cost_s_mean.sum() + cost_im_mean.sum()
elif mode == "train" or mode == "noise_soft":
if hard_negative:
return cost_s_max.sum() + cost_im_max.sum()
else:
return cost_s_mean.sum() + cost_im_mean.sum()
elif mode == "eval_loss" or mode == "y_score":
return cost_s_mean + cost_im_mean
def SIM_PAIR(clean_input,noise_input, eps=1e-8):
"""
"""
clean_input_norm = torch.norm(clean_input,p=2,dim=1).unsqueeze(0)
noise_input_norm = torch.norm(noise_input,p=2,dim=1).unsqueeze(1)
clean_input = clean_input.transpose(0,1)
sim_t = torch.mm(noise_input,clean_input)
sim_norm = torch.mm(noise_input_norm,clean_input_norm)
cos_sim = sim_t/sim_norm.clamp(min=eps)
return cos_sim
def SIM_SELE(index,value):
top = index.topk(k=1, dim=1, largest=True, sorted=True)
value = torch.gather(value,1,top[1])
return torch.where(top[0]/value<1,top[0]/value,value/top[0])
def EuclideanDistances(b,a):
sq_a = a**2
sum_sq_a = torch.sum(sq_a,dim=1).unsqueeze(1) # m->[m, 1]
sq_b = b**2
sum_sq_b = torch.sum(sq_b,dim=1).unsqueeze(0) # n->[1, n]
bt = b.t()
return torch.sqrt(torch.abs(sum_sq_a+sum_sq_b-2*a.mm(bt)).clamp(min=1e-04))
class SGRAF(object):
"""
Similarity Reasoning and Filtration (SGRAF) Network
"""
def __init__(self, opt):
# Build Models
self.grad_clip = opt.grad_clip
self.img_enc = EncoderImage(
opt.img_dim, opt.embed_size, no_imgnorm=opt.no_imgnorm
)
self.txt_enc = EncoderText(
opt.vocab_size,
opt.word_dim,
opt.embed_size,
opt.num_layers,
use_bi_gru=opt.bi_gru,
no_txtnorm=opt.no_txtnorm,
)
self.sim_enc = EncoderSimilarity(
opt.embed_size, opt.sim_dim, opt.module_name, opt.sgr_step
)
if torch.cuda.is_available():
self.img_enc.cuda()
self.txt_enc.cuda()
self.sim_enc.cuda()
cudnn.benchmark = True
# Loss and Optimizer
self.criterion = ContrastiveLoss(margin=opt.margin,warmup_rate=opt.warmup_rate)
params = list(self.txt_enc.parameters())
params += list(self.img_enc.parameters())
params += list(self.sim_enc.parameters())
self.params = params
self.optimizer = torch.optim.Adam(params, lr=opt.learning_rate)
self.Eiters = 0
self.noise_train = opt.noise_train
self.noise_tem = opt.noise_tem
def state_dict(self):
state_dict = [
self.img_enc.state_dict(),
self.txt_enc.state_dict(),
self.sim_enc.state_dict(),
]
return state_dict
def load_state_dict(self, state_dict):
self.img_enc.load_state_dict(state_dict[0])
self.txt_enc.load_state_dict(state_dict[1])
self.sim_enc.load_state_dict(state_dict[2])
def train_start(self):
"""switch to train mode"""
self.img_enc.train()
self.txt_enc.train()
self.sim_enc.train()
def val_start(self):
"""switch to evaluate mode"""
self.img_enc.eval()
self.txt_enc.eval()
self.sim_enc.eval()
def forward_emb(self, images, captions, lengths):
"""Compute the image and caption embeddings"""
if torch.cuda.is_available():
images = images.cuda()
captions = captions.cuda()
# Forward feature encoding
img_embs = self.img_enc(images)
cap_embs = self.txt_enc(captions, lengths)
return img_embs, cap_embs, lengths
def forward_sim(self, img_embs, cap_embs, cap_lens):
# Forward similarity encoding
sims = self.sim_enc(img_embs, cap_embs, cap_lens)
return sims
def glo_emb(self,img_emb, cap_emb, cap_lens):
cap_emb_all = []
n_image = img_emb.size(0)
n_caption = cap_emb.size(0)
# get enhanced global images by self-attention
img_ave = torch.mean(img_emb, 1)
#img_glo = self.v_global_w(img_emb, img_ave) #(batch_size, 1024)
img_glo = img_ave
for i in range(n_caption):
# get the i-th sentence
n_word = cap_lens[i]
cap_i = cap_emb[i, :n_word, :].unsqueeze(0)
# get enhanced global i-th text by self-attention
cap_ave_i = torch.mean(cap_i, 1)
#cap_glo_i = self.t_global_w(cap_i, cap_ave_i) #(batch_size, 1024)
cap_emb_all.append(cap_ave_i)
# (n_image, n_caption)
cap_emb_all = torch.cat(cap_emb_all, 0)
return img_glo,cap_emb_all
def train(
self,
images,
captions,
lengths,
hard_negative=True,
labels=None,
soft_margin=None,
mode="train",
sim_type='euc',
ids='non',
):
"""One epoch training.
"""
self.Eiters += 1
# compute the embeddings
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, lengths)
sims = self.forward_sim(img_embs, cap_embs, cap_lens)
# measure accuracy and record loss
self.optimizer.zero_grad()
loss = self.criterion(
sims,
hard_negative=hard_negative,
labels=labels,
soft_margin=soft_margin,
mode=mode,
noise_tem = self.noise_tem
)
# return per-sample loss
if mode == "eval_loss":
return loss
if mode =="y_score":
img_embs,cap_embs = self.glo_emb(images, captions, lengths)
loss = loss.reshape(-1, 1)
gmm_A = GaussianMixture(n_components=2, max_iter=100, tol=1e-2, reg_covar=5e-4)
gmm_A.fit(loss.cpu().numpy())
#print(y_loss)
#data = loss.cpu().numpy()
prob_A = gmm_A.predict_proba(loss.cpu().numpy())
#class_pre = gmm_A.predict(loss.cpu().numpy())
prob_A = prob_A[:, gmm_A.means_.argmin()]
class_c = prob_A>0.8
class_n = 1-class_c
if class_c.sum()==img_embs.size()[0]:
y_value = torch.ones(img_embs.size()[0]).cuda()
return y_value
if class_n.sum()==img_embs.size()[0]:
y_value = torch.zeros(img_embs.size()[0]).cuda()
return y_value
clean_index = class_c.nonzero()[0]
noise_index = class_n.nonzero()[0]
image_c = img_embs.index_select(0,torch.from_numpy(clean_index).cuda())
image_n = img_embs.index_select(0,torch.from_numpy(noise_index).cuda())
text_c = cap_embs.index_select(0,torch.from_numpy(clean_index).cuda())
text_n = cap_embs.index_select(0,torch.from_numpy(noise_index).cuda())
if sim_type=='euc':
img_e_dis = EuclideanDistances(image_c,image_n)
text_e_dis = EuclideanDistances(text_c,text_n)
top_img = img_e_dis.topk(k=1, dim=1, largest=False, sorted=True)
top_text = text_e_dis.topk(k=1, dim=1, largest=False, sorted=True)
img2text = torch.gather(text_e_dis,1,top_img[1]).float()
text2img = torch.gather(img_e_dis,1,top_text[1]).float()
y_half_img = torch.where(top_img[0]/img2text<1,top_img[0]/img2text,img2text/top_img[0])
y_half_text = torch.where(top_text[0]/text2img<1,top_text[0]/text2img,text2img/top_text[0])
dis_f_n = (y_half_img+y_half_text)/2
else:
sim_img = SIM_PAIR(image_c,image_n)
sim_text = SIM_PAIR(text_c,text_n)
img2text = SIM_SELE(sim_img,sim_text)
text2img = SIM_SELE(sim_text,sim_img)
dis_f_n = (img2text+text2img)/2
#dis_f_n =1- (dis_fin - dis_fin.min()) / (dis_fin.max() - dis_fin.min())
y_value = torch.zeros(img_embs.size()[0]).cuda()
y_value[clean_index]=1
y_value.scatter_(0, torch.from_numpy(noise_index).cuda(), dis_f_n.clamp(0,1).squeeze(1))
return y_value
# compute gradient and do SGD step
loss.backward()
if self.grad_clip > 0:
clip_grad_norm_(self.params, self.grad_clip)
self.optimizer.step()
return loss.item()
def sim_score(self,images, captions, lengths,type='sim'):
if type=='sim':
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, lengths)
sims = self.forward_sim(img_embs, cap_embs, cap_lens)
I = self.criterion(sims, mode="predict")
p = I.clamp(0, 1)
elif type=='sele':
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, lengths)
sims = self.forward_sim(img_embs, cap_embs, cap_lens)
diagonal = sims.diag().view(sims.size(0), 1)
clean_num = int(sims.size(0)/4)
top = diagonal.topk(k=clean_num, dim=0, largest=False, sorted=True)
return p
def predict(self, images, captions, lengths,images_n='', captions_n='', lengths_n='',epoch=0):
"""
predict the given samples
"""
# compute the embeddings
img_embs, cap_embs, cap_lens = self.forward_emb(images, captions, lengths)
img_g,text_g = self.sim_enc.glo_emb(img_embs, cap_embs, cap_lens)
sims = self.forward_sim(img_embs, cap_embs, cap_lens)
clean_index,noise_index = self.criterion(sims, mode="predict_clean")
image_c = img_g[clean_index]
text_c = text_g[clean_index]
sim_img = SIM_PAIR(image_c,img_g)
sim_text = SIM_PAIR(text_c,text_g)
img2text = SIM_SELE(sim_img,sim_text)
text2img = SIM_SELE(sim_text,sim_img)
dis_f_n = 0.5 + (img2text+text2img)/4
if self.noise_train=='noise_soft':
index = dis_f_n>self.noise_tem
dis_f_n = dis_f_n*index
y_value = torch.zeros(images.size()[0]).cuda()
y_value[clean_index]=1
y_value.scatter_(0, noise_index, dis_f_n.clamp(0,1).squeeze(1))
c_y = y_value.clamp(0, 1)
if epoch:
img_embs, cap_embs, cap_lens = self.forward_emb(images_n, captions_n, lengths_n)
img_g_n,text_g_n = self.sim_enc.glo_emb(img_embs, cap_embs, cap_lens)
sim_img = SIM_PAIR(image_c,img_g_n)
sim_text = SIM_PAIR(text_c,text_g_n)
img2text = SIM_SELE(sim_img,sim_text)
text2img = SIM_SELE(sim_text,sim_img)
dis_f_n = (img2text+text2img)/2
if self.noise_train=='noise_soft':
index = dis_f_n>self.noise_tem
dis_f_n = dis_f_n*index
n_y = dis_f_n.clamp(0, 1).squeeze(1)
else:
n_y = ''
return c_y,n_y