-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathinference.py
130 lines (110 loc) · 4.37 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import math
import cv2
import os.path as osp
import glob
import numpy as np
from shapely.geometry import Polygon
import pyclipper
from model import dbnet
def resize_image(image, image_short_side=736):
height, width, _ = image.shape
if height < width:
new_height = image_short_side
new_width = int(math.ceil(new_height / height * width / 32) * 32)
else:
new_width = image_short_side
new_height = int(math.ceil(new_width / width * height / 32) * 32)
resized_img = cv2.resize(image, (new_width, new_height))
return resized_img
def box_score_fast(bitmap, _box):
# 计算 box 包围的区域的平均得分
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def unclip(box, unclip_ratio=1.5):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [points[index_1], points[index_2],
points[index_3], points[index_4]]
return box, min(bounding_box[1])
def polygons_from_bitmap(pred, bitmap, dest_width, dest_height, max_candidates=100, box_thresh=0.7):
pred = pred[..., 0]
bitmap = bitmap[..., 0]
height, width = bitmap.shape
boxes = []
scores = []
_, contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:max_candidates]:
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = box_score_fast(pred, points.reshape(-1, 2))
if box_thresh > score:
continue
if points.shape[0] > 2:
box = unclip(points, unclip_ratio=2.0)
if len(box) > 1:
continue
else:
continue
box = box.reshape(-1, 2)
_, sside = get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < 5:
continue
box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.tolist())
scores.append(score)
return boxes, scores
if __name__ == '__main__':
mean = np.array([103.939, 116.779, 123.68])
_, model = dbnet()
model.load_weights('/home/adam/workspace/github/xuannianz/carrot/db/checkpoints/2020-01-02/db_48_2.0216_2.5701.h5', by_name=True, skip_mismatch=True)
for image_path in glob.glob(osp.join('datasets/total_text/test_images', '*.jpg')):
image = cv2.imread(image_path)
src_image = image.copy()
h, w = image.shape[:2]
image = resize_image(image)
image = image.astype(np.float32)
image -= mean
image_input = np.expand_dims(image, axis=0)
p = model.predict(image_input)[0]
bitmap = p > 0.3
boxes, scores = polygons_from_bitmap(p, bitmap, w, h, box_thresh=0.5)
for box in boxes:
cv2.drawContours(src_image, [np.array(box)], -1, (0, 255, 0), 2)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', src_image)
cv2.waitKey(0)
image_fname = osp.split(image_path)[-1]
cv2.imwrite('test/' + image_fname, src_image)