-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdecode.py
147 lines (134 loc) · 5.91 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
import os
import argparse
import torch as th
import numpy as np
from nnet.spex_plus import SpEx_Plus
from utils.logger import get_logger
from utils.audio import WaveReader, write_wav
logger = get_logger(__name__)
class NnetComputer(object):
def __init__(self, cpt_dir, gpuid, nnet_conf):
self.device = th.device(
"cuda:{}".format(gpuid)) if gpuid >= 0 else th.device("cpu")
nnet = self._load_nnet(cpt_dir, nnet_conf)
self.nnet = nnet.to(self.device) if gpuid >= 0 else nnet
# set eval model
self.nnet.eval()
def _load_nnet(self, cpt_dir, nnet_conf):
nnet = SpEx_Plus(**nnet_conf)
cpt_fname = os.path.join(cpt_dir, "best.pt.tar")
cpt = th.load(cpt_fname, map_location="cpu")
#model_dict = nnet.state_dict()
#se_dict = {k: v for k, v in cpt["model_state_dict"].items() if k in model_dict}
#model_dict.update(se_dict)
#nnet.load_state_dict(model_dict)
#cpt = {
# "epoch": cpt["epoch"],
# "model_state_dict": nnet.state_dict(),
# "optim_state_dict": cpt["optim_state_dict"]
#}
#th.save(cpt, os.path.join(cpt_dir, "tmp.pt.tar"))
nnet.load_state_dict(cpt["model_state_dict"])
logger.info("Load checkpoint from {}, epoch {:d}".format(
cpt_fname, cpt["epoch"]))
return nnet
def compute(self, samps, aux_samps, aux_samps_len):
with th.no_grad():
raw = th.tensor(samps, dtype=th.float32, device=self.device)
aux = th.tensor(aux_samps, dtype=th.float32, device=self.device)
aux_len = th.tensor(aux_samps_len, dtype=th.float32, device=self.device)
aux = aux.unsqueeze(0)
sps,sps2,sps3,spk_pred = self.nnet(raw, aux, aux_len)
sp_samps = np.squeeze(sps.detach().cpu().numpy())
return sp_samps
def run(args):
mix_input = WaveReader(args.input, sample_rate=args.sample_rate)
aux_input = WaveReader(args.input_aux, sample_rate=args.sample_rate)
nnet_conf = {
"L1": int(args.L1 * args.sample_rate),
"L2": int(args.L2 * args.sample_rate),
"L3": int(args.L3 * args.sample_rate),
"N": args.N,
"B": args.B,
"O": args.O,
"P": args.P,
"Q": args.Q,
"num_spks": args.num_spks,
"spk_embed_dim": args.spk_embed_dim,
"causal": args.causal}
computer = NnetComputer(args.checkpoint, args.gpu, nnet_conf)
for key, mix_samps in mix_input:
aux_samps = aux_input[key]
logger.info("Compute on utterance {}...".format(key))
samps = computer.compute(mix_samps, aux_samps, len(aux_samps))
norm = np.linalg.norm(mix_samps, np.inf)
samps = samps[:mix_samps.size]
# norm
samps = samps * norm / np.max(np.abs(samps))
write_wav(os.path.join(args.output_dir, "{}.wav".format(key)), samps, sample_rate=args.sample_rate)
logger.info("Compute over {:d} utterances".format(len(mix_input)))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=
"Command to do speech separation in time domain using ConvTasNet",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--checkpoint", type=str, help="Directory of checkpoint")
parser.add_argument(
"--input", type=str, required=True, help="Script for input waveform")
parser.add_argument(
"--input_aux", type=str, required=True, help="Script for input reference waveform")
parser.add_argument(
"--gpu", type=int, default=-1,
help="GPU device to offload model to, -1 means running on CPU")
parser.add_argument(
"--sample_rate", type=int, default=8000, help="Sample rate for mixture input")
parser.add_argument(
"--output_dir", type=str, default="spex",
help="Directory to dump separated results out")
parser.add_argument("--L1",
type=float,
default=0.0025,
help="Short window length for high temporal resolution, default 2.5ms.")
parser.add_argument("--L2",
type=float,
default=0.01,
help="Middle window length for middle temporal resolution, default 10ms.")
parser.add_argument("--L3",
type=float,
default=0.02,
help="Long window length for low temporal resolution, default 20ms.")
parser.add_argument("--N",
type=int,
default=256,
help="Number of filters of convolution in speech encoder.")
parser.add_argument("--B",
type=int,
default=8,
help="Number of TCN blocks in each stack.")
parser.add_argument("--O",
type=int,
default=256,
help="Number of filters of 1x1 convolution.")
parser.add_argument("--P",
type=int,
default=512,
help="Number of filters of depthwise convolution.")
parser.add_argument("--Q",
type=int,
default=3,
help="Kernel size of depthwise convolution.")
parser.add_argument("--num_spks",
type=int,
default=101,
help="Number of speakers within the training data.")
parser.add_argument("--spk_embed_dim",
type=int,
default=256,
help="Speaker embedding dimension.")
parser.add_argument("--causal",
type=bool,
default=False,
help="causal for online or non-causal for offline process.")
args = parser.parse_args()
run(args)