-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathDDP_moco_ccrop.py
304 lines (252 loc) · 11.1 KB
/
DDP_moco_ccrop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import argparse
import time
import math
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from builder import build_optimizer, build_logger
from models import MoCo, build_model
from losses import build_loss
from datasets import build_dataset, build_dataset_ccrop
from utils.util import AverageMeter, format_time, set_seed, adjust_learning_rate
from utils.config import Config, ConfigDict, DictAction
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--cfgname', help='specify log_file; for debug use')
parser.add_argument('--resume', type=str, help='path to resume checkpoint (default: None)')
parser.add_argument('--load', type=str, help='Load init weights for fine-tune (default: None)')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--cfg-options', nargs='+', action=DictAction,
help='update the config; e.g., --cfg-options use_ema=True k1=a,b k2="[a,b]"'
'Note that the quotation marks are necessary and that no white space is allowed.')
args = parser.parse_args()
return args
def get_cfg(args):
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir
if args.work_dir is not None:
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
dirname = os.path.dirname(args.config).replace('configs', 'checkpoints', 1)
filename = os.path.splitext(os.path.basename(args.config))[0]
cfg.work_dir = os.path.join(dirname, filename)
os.makedirs(cfg.work_dir, exist_ok=True)
# cfgname
if args.cfgname is not None:
cfg.cfgname = args.cfgname
else:
cfg.cfgname = os.path.splitext(os.path.basename(args.config))[0]
assert cfg.cfgname is not None
# seed
if args.seed != 0:
cfg.seed = args.seed
elif not hasattr(cfg, 'seed'):
cfg.seed = 42
set_seed(cfg.seed)
# resume or load init weights
if args.resume:
cfg.resume = args.resume
if args.load:
cfg.load = args.load
assert not (cfg.resume and cfg.load)
return cfg
def load_weights(ckpt_path, train_set, model, optimizer, resume=True):
# load checkpoint
print("==> Loading checkpoint '{}'".format(ckpt_path))
assert os.path.isfile(ckpt_path)
checkpoint = torch.load(ckpt_path, map_location='cuda')
if resume:
# load model & optimizer
train_set.boxes = checkpoint['boxes'].cpu()
model.load_state_dict(checkpoint['moco_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
else:
raise ValueError
start_epoch = checkpoint['epoch'] + 1
print("Loaded. (epoch {})".format(checkpoint['epoch']))
return start_epoch
def update_box(eval_train_loader, model, len_ds, logger, t=0.05):
if logger:
logger.info(f'==> Start updating boxes...')
model.eval()
boxes = []
t1 = time.time()
for cur_iter, (images, _) in enumerate(eval_train_loader): # drop_last=False
images = images.cuda(non_blocking=True)
with torch.no_grad():
feat_map = model(images, return_feat=True) # (N, C, H, W)
N, Cf, Hf, Wf = feat_map.shape
eval_train_map = feat_map.sum(1).view(N, -1) # (N, Hf*Wf)
eval_train_map = eval_train_map - eval_train_map.min(1, keepdim=True)[0]
eval_train_map = eval_train_map / eval_train_map.max(1, keepdim=True)[0]
eval_train_map = eval_train_map.view(N, 1, Hf, Wf)
eval_train_map = F.interpolate(eval_train_map, size=images.shape[-2:], mode='bilinear') # (N, 1, Hi, Wi)
Hi, Wi = images.shape[-2:]
for hmap in eval_train_map:
hmap = hmap.squeeze(0) # (Hi, Wi)
h_filter = (hmap.max(1)[0] > t).int()
w_filter = (hmap.max(0)[0] > t).int()
h_min, h_max = torch.nonzero(h_filter).view(-1)[[0, -1]] / Hi # [h_min, h_max]; 0 <= h <= 1
w_min, w_max = torch.nonzero(w_filter).view(-1)[[0, -1]] / Wi # [w_min, w_max]; 0 <= w <= 1
boxes.append(torch.tensor([h_min, w_min, h_max, w_max]))
boxes = torch.stack(boxes, dim=0).cuda() # (num_iters, 4)
gather_boxes = [torch.zeros_like(boxes) for _ in range(dist.get_world_size())]
dist.all_gather(gather_boxes, boxes)
all_boxes = torch.stack(gather_boxes, dim=1).view(-1, 4)
all_boxes = all_boxes[:len_ds]
if logger is not None: # cfg.rank == 0
t2 = time.time()
epoch_time = format_time(t2 - t1)
logger.info(f'Update box: {epoch_time}')
return all_boxes
def train(train_loader, model, criterion, optimizer, epoch, cfg, logger, writer):
"""one epoch training"""
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
num_iter = len(train_loader)
end = time.time()
time1 = time.time()
for idx, (images, _) in enumerate(train_loader):
images[0] = images[0].cuda(non_blocking=True)
images[1] = images[1].cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# compute output
output, target = model(im_q=images[0], im_k=images[1])
loss = criterion(output, target)
losses.update(loss.item(), images[0].size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % cfg.log_interval == 0 and logger is not None: # cfg.rank == 0:
lr = optimizer.param_groups[0]['lr']
logger.info(f'Epoch [{epoch}][{idx+1}/{num_iter}] - '
f'data_time: {data_time.avg:.3f}, '
f'batch_time: {batch_time.avg:.3f}, '
f'lr: {lr:.5f}, '
f'loss: {loss:.3f}({losses.avg:.3f})')
if logger is not None: # cfg.rank == 0
time2 = time.time()
epoch_time = format_time(time2 - time1)
logger.info(f'Epoch [{epoch}] - epoch_time: {epoch_time}, '
f'train_loss: {losses.avg:.3f}')
if writer is not None:
lr = optimizer.param_groups[0]['lr']
writer.add_scalar('Pretrain/lr', lr, epoch)
writer.add_scalar('Pretrain/loss', losses.avg, epoch)
def main():
# args & cfg
args = parse_args()
cfg = get_cfg(args)
world_size = torch.cuda.device_count()
print('GPUs on this node:', world_size)
cfg.world_size = world_size
# write cfg
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = os.path.join(cfg.work_dir, f'{timestamp}.cfg')
with open(log_file, 'a') as f:
f.write(cfg.pretty_text)
# spawn
mp.spawn(main_worker, nprocs=world_size, args=(world_size, cfg))
def main_worker(rank, world_size, cfg):
print('==> Start rank:', rank)
local_rank = rank % 8
cfg.local_rank = local_rank
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl', init_method=f'tcp://localhost:{cfg.port}',
world_size=world_size, rank=rank)
# build logger, writer
logger, writer = None, None
if rank == 0:
writer = SummaryWriter(log_dir=os.path.join(cfg.work_dir, 'tensorboard'))
logger = build_logger(cfg.work_dir, 'pretrain')
# build data loader
bsz_gpu = int(cfg.batch_size / cfg.world_size)
print('batch_size per gpu:', bsz_gpu)
train_set = build_dataset_ccrop(cfg.data.train)
len_ds = len(train_set)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True)
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=bsz_gpu,
num_workers=cfg.num_workers,
pin_memory=True,
sampler=train_sampler,
drop_last=True
)
eval_train_set = build_dataset(cfg.data.eval_train)
eval_train_sampler = torch.utils.data.distributed.DistributedSampler(eval_train_set, shuffle=False)
eval_train_loader = torch.utils.data.DataLoader(
eval_train_set,
batch_size=bsz_gpu,
num_workers=cfg.num_workers,
pin_memory=True,
sampler=eval_train_sampler,
drop_last=False
)
# build model, criterion; optimizer
encoder_q = build_model(cfg.model)
encoder_k = build_model(cfg.model)
model = MoCo(encoder_q, encoder_k, **cfg.moco) # cfg.moco.dim, K, m, T, mlp
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[cfg.local_rank])
criterion = build_loss(cfg.loss).cuda()
optimizer = build_optimizer(cfg.optimizer, model.parameters())
start_epoch = 1
if cfg.resume:
start_epoch = load_weights(cfg.resume, train_set, model, optimizer, resume=True)
cudnn.benchmark = True
# Start training
print("==> Start training...")
for epoch in range(start_epoch, cfg.epochs + 1):
train_sampler.set_epoch(epoch)
adjust_learning_rate(cfg.lr_cfg, optimizer, epoch)
# start ContrastiveCrop
train_set.use_box = epoch >= cfg.warmup_epochs + 1
# train; all processes
train(train_loader, model, criterion, optimizer, epoch, cfg, logger, writer)
# update boxes; all processes
if epoch >= cfg.warmup_epochs and epoch != cfg.epochs and epoch % cfg.loc_interval == 0:
# all_boxes: tensor (len_ds, 4); (h_min, w_min, h_max, w_max)
all_boxes = update_box(eval_train_loader, model.module.encoder_q, len_ds, logger,
t=cfg.box_thresh) # on_cuda=True
assert len(all_boxes) == len_ds
train_set.boxes = all_boxes.cpu()
# save ckpt; master process
if rank == 0 and epoch % cfg.save_interval == 0:
model_path = os.path.join(cfg.work_dir, f'epoch_{epoch}.pth')
state_dict = {
'optimizer_state': optimizer.state_dict(),
'moco_state': model.state_dict(),
'boxes': train_set.boxes,
'epoch': epoch
}
torch.save(state_dict, model_path)
# save the last model; master process
if rank == 0:
model_path = os.path.join(cfg.work_dir, 'last.pth')
state_dict = {
'optimizer_state': optimizer.state_dict(),
'moco_state': model.state_dict(),
'boxes': train_set.boxes,
'epoch': cfg.epochs
}
torch.save(state_dict, model_path)
if __name__ == '__main__':
main()