Skip to content

WcDT: World-centric Diffusion Transformer for Traffic Scene Generation

License

Notifications You must be signed in to change notification settings

yangchen1997/WcDT

Repository files navigation

WcDT: World-centric Diffusion Transformer Traffic Scene Generation

This repository contains the official implementation of WcDT: World-centric Diffusion Transformer for Traffic Scene Generation [Paper Link]

Gettting Started

First of all, we recommend that you read the description of the Sim Agents Challenge and the Motion Prediction dataset on the waymo website.

1. Clone this repository:

git clone https://github.com/yangchen1997/WcDT.git

2. Install the dependencies:

conda env create -f environment.yml

3. Download Waymo Open Dataset(Please note: If you are downloading waymo datasets for the first time, you need to click "Download" on the waymo website and register your account).After downloading the dataset directory should be organized as follows:

/path/to/dataset_root/
├── train_set/
  ├── training.tfrecord-00000-of-01000
  ├── training.tfrecord-00001-of-01000
  ├── ...
└── val_set/
  ├── validation.tfrecord-00000-of-00150
  ├── validation.tfrecord-00001-of-00150
  ├── ...
└── test_set/
  ├── testing.tfrecord-00000-of-00150
  ├── testing.tfrecord-00001-of-00150
  ├── ...

Tasks

This project includes the following tasks:

  1. Data Preprocess: This task is divided into two subtasks, data compression (which removes redundancy from the waymo dataset) and data splitting.

  2. Training

  3. Evaluating Models and Visualising Results

Before running the project, you need to configure the tasks to be performed in config.yaml.

tasks config:

task_config:
  task_list:
    - "DATA_PREPROCESS"
    - "DATA_SPLIT"
    - "DATA_COUNT"
    - "TRAIN_MODEL"
    - "SHOW_RESULTS"
    - "EVAL_MODEL"
    - "GENE_SUBMISSION"
  output_dir: "output"
  log_dir: "log"
  image_dir: "result_image"
  model_dir: "model"
  result_dir: "result"
  pre_train_model: ""
  waymo_train_dir: "path to waymo train_set"
  waymo_val_dir: "path to waymo valid_set"
  waymo_test_dir: "path to waymo test_set"
  data_output: "data_output"
  data_preprocess_dir: "data_preprocess_dir"
  train_dir: "train_dir"
  val_dir: "val_dir"
  test_dir: "test_dir"

start tasks:

bash run_main.sh

Data Preprocess

task config:

data_preprocess_config:
  data_size: 100
  max_data_size: 2000
  num_works: 20

Training

task config:

train_model_config:
  use_gpu: False
  gpu_ids:
    - 6
    - 7
  batch_size: 4
  num_works: 0
  his_step: 11
  max_pred_num: 8
  max_other_num: 6
  max_traffic_light: 8
  max_lane_num: 32
  max_point_num: 128
  num_head: 8
  attention_dim: 128
  multimodal: 10
  time_steps: 50
  # cosine or linear
  schedule: "linear"
  num_epoch: 200
  init_lr: 0.0001

Evaluate

Model ADE↓ MinADE↓
WcDT-64 4.872  1.962
WcDT-128 4.563 1.669

Qualitative Results

Demos for lane-changing scenarios:

First Image
Ground truth

Second Image
WcDT-128 result

Demos for more complex turning scenarios:

First Image
Ground truth

Second Image
WcDT-128 result

Todo List

  • Data Statistics
  • Generate Submission
  • Factorized Attention for Temporal Features
  • Graph Attention Mechanisms for Transformer
  • Lane Loss(FDE Loss + Timestep Weighted Loss)
  • Scene Label
  • Upgrade Decoder(Prposed + Refined Trajectory)

Citation

If you found this repository useful, please consider citing our paper:

@article{yang2024wcdt,
  title={WcDT: World-centric Diffusion Transformer for Traffic Scene Generation},
  author={Yang, Chen and Tian, Aaron Xuxiang and Chen, Dong and Shi, Tianyu and Heydarian, Arsalan},
  journal={arXiv preprint arXiv:2404.02082},
  year={2024}
}

About

WcDT: World-centric Diffusion Transformer for Traffic Scene Generation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages