-
Notifications
You must be signed in to change notification settings - Fork 451
/
Copy pathface_enhancement.py
executable file
·115 lines (90 loc) · 4.65 KB
/
face_enhancement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
'''
import cv2
import time
import numpy as np
import __init_paths
from face_detect.retinaface_detection import RetinaFaceDetection
from face_parse.face_parsing import FaceParse
from face_model.face_gan import FaceGAN
from sr_model.real_esrnet import RealESRNet
from align_faces import warp_and_crop_face, get_reference_facial_points
class FaceEnhancement(object):
def __init__(self, args, base_dir='./', in_size=512, out_size=None, model=None, use_sr=True, device='cuda'):
self.facedetector = RetinaFaceDetection(base_dir, device)
self.facegan = FaceGAN(base_dir, in_size, out_size, model, args.channel_multiplier, args.narrow, args.key, device=device)
self.srmodel = RealESRNet(base_dir, args.sr_model, args.sr_scale, args.tile_size, device=device)
self.faceparser = FaceParse(base_dir, device=device)
self.use_sr = use_sr
self.in_size = in_size
self.out_size = in_size if out_size is None else out_size
self.threshold = 0.9
self.alpha = args.alpha
# the mask for pasting restored faces back
self.mask = np.zeros((512, 512), np.float32)
cv2.rectangle(self.mask, (26, 26), (486, 486), (1, 1, 1), -1, cv2.LINE_AA)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 4)
self.mask = cv2.GaussianBlur(self.mask, (101, 101), 4)
self.kernel = np.array((
[0.0625, 0.125, 0.0625],
[0.125, 0.25, 0.125],
[0.0625, 0.125, 0.0625]), dtype="float32")
# get the reference 5 landmarks position in the crop settings
default_square = True
inner_padding_factor = 0.25
outer_padding = (0, 0)
self.reference_5pts = get_reference_facial_points(
(self.in_size, self.in_size), inner_padding_factor, outer_padding, default_square)
def mask_postprocess(self, mask, thres=26):
mask[:thres, :] = 0; mask[-thres:, :] = 0
mask[:, :thres] = 0; mask[:, -thres:] = 0
mask = cv2.GaussianBlur(mask, (101, 101), 4)
mask = cv2.GaussianBlur(mask, (101, 101), 4)
return mask.astype(np.float32)
def process(self, img, aligned=False):
orig_faces, enhanced_faces = [], []
if aligned:
ef = self.facegan.process(img)
orig_faces.append(img)
enhanced_faces.append(ef)
if self.use_sr:
ef = self.srmodel.process(ef)
return ef, orig_faces, enhanced_faces
if self.use_sr:
img_sr = self.srmodel.process(img)
if img_sr is not None:
img = cv2.resize(img, img_sr.shape[:2][::-1])
facebs, landms = self.facedetector.detect(img)
height, width = img.shape[:2]
full_mask = np.zeros((height, width), dtype=np.float32)
full_img = np.zeros(img.shape, dtype=np.uint8)
for i, (faceb, facial5points) in enumerate(zip(facebs, landms)):
if faceb[4]<self.threshold: continue
fh, fw = (faceb[3]-faceb[1]), (faceb[2]-faceb[0])
facial5points = np.reshape(facial5points, (2, 5))
of, tfm_inv = warp_and_crop_face(img, facial5points, reference_pts=self.reference_5pts, crop_size=(self.in_size, self.in_size))
# enhance the face
ef = self.facegan.process(of)
orig_faces.append(of)
enhanced_faces.append(ef)
#tmp_mask = self.mask
tmp_mask = self.mask_postprocess(self.faceparser.process(ef)[0]/255.)
tmp_mask = cv2.resize(tmp_mask, (self.in_size, self.in_size))
tmp_mask = cv2.warpAffine(tmp_mask, tfm_inv, (width, height), flags=3)
if min(fh, fw)<100: # gaussian filter for small faces
ef = cv2.filter2D(ef, -1, self.kernel)
ef = cv2.addWeighted(ef, self.alpha, of, 1.-self.alpha, 0.0)
if self.in_size!=self.out_size:
ef = cv2.resize(ef, (self.in_size, self.in_size))
tmp_img = cv2.warpAffine(ef, tfm_inv, (width, height), flags=3)
mask = tmp_mask - full_mask
full_mask[np.where(mask>0)] = tmp_mask[np.where(mask>0)]
full_img[np.where(mask>0)] = tmp_img[np.where(mask>0)]
full_mask = full_mask[:, :, np.newaxis]
if self.use_sr and img_sr is not None:
img = cv2.convertScaleAbs(img_sr*(1-full_mask) + full_img*full_mask)
else:
img = cv2.convertScaleAbs(img*(1-full_mask) + full_img*full_mask)
return img, orig_faces, enhanced_faces