-
Notifications
You must be signed in to change notification settings - Fork 124
/
train_trades_mnist_binary.py
230 lines (195 loc) · 9.1 KB
/
train_trades_mnist_binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from models.net_mnist import *
from trades import *
parser = argparse.ArgumentParser(description='PyTorch MNIST TRADES Adversarial Training (Binary)')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 128)')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--epsilon', default=0.1,
help='perturbation')
parser.add_argument('--num-steps', default=20,
help='perturb number of steps')
parser.add_argument('--step-size', default=0.01,
help='perturb step size')
parser.add_argument('--beta', default=5.0,
help='regularization, i.e., lambda in TRADES for binary case')
parser.add_argument('--weight-decay', '--wd', default=0.0,
type=float, metavar='W', help='weight decay')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--model-dir', default='./model-mnist-net-two-class',
help='directory of model for saving checkpoint')
parser.add_argument('--save-freq', '-s', default=10, type=int, metavar='N',
help='save frequency (default: 10)')
args = parser.parse_args()
# settings
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# download MNIST dataset
dataset_train = datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor()]))
dataset_test = datasets.MNIST('../data', train=False,
transform=transforms.Compose([transforms.ToTensor()]))
# select class '1' and class '3'
def get_same_index(target, label_1, label_2):
label_indices = []
for i in range(len(target)):
if target[i] == label_1:
label_indices.append(i)
if target[i] == label_2:
label_indices.append(i)
return label_indices
# choose 2 classes - '1', '3'
idx_train = get_same_index(dataset_train.train_labels, 1, 3)
dataset_train.train_labels = dataset_train.train_labels[idx_train] - 2
dataset_train.train_data = dataset_train.train_data[idx_train]
# choose 2 classes - '1', '3'
idx_test = get_same_index(dataset_test.test_labels, 1, 3)
dataset_test.test_labels = dataset_test.test_labels[idx_test] - 2
dataset_test.test_data = dataset_test.test_data[idx_test]
# set up dataloader
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=args.test_batch_size, shuffle=True, **kwargs)
def perturb_hinge(net, x_nat):
# Perturb function based on (E[\phi(f(x)f(x'))])
# init with random noise
net.eval()
x = x_nat.detach() + 0.001 * torch.randn(x_nat.shape).cuda().detach()
for _ in range(args.num_steps):
x.requires_grad_()
with torch.enable_grad():
# perturb based on hinge loss
loss = torch.mean(torch.clamp(1 - net(x).squeeze(1) * (net(x_nat).squeeze(1) / args.beta), min=0))
grad = torch.autograd.grad(loss, [x])[0]
x = x.detach() + args.step_size * torch.sign(grad.detach())
x = torch.min(torch.max(x, x_nat - args.epsilon), x_nat + args.epsilon)
x = torch.clamp(x, 0.0, 1.0)
net.train()
return x
def perturb_logistic(net, x_nat, target):
# Perturb function based on logistic loss
# init with random noise
net.eval()
x = x_nat.detach() + 0.001 * torch.randn(x_nat.shape).cuda().detach()
for _ in range(args.num_steps):
x.requires_grad_()
with torch.enable_grad():
# perturb based on logistic loss
loss = torch.mean(1 + torch.exp(-1.0 * target.float() * net(x).squeeze(1)))
grad = torch.autograd.grad(loss, [x])[0]
x = x.detach() + args.step_size * torch.sign(grad.detach())
x = torch.min(torch.max(x, x_nat - args.epsilon), x_nat + args.epsilon)
x = torch.clamp(x, 0.0, 1.0)
net.train()
return x
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# perturb input x
x_adv = perturb_hinge(net=model, x_nat=data)
# optimize
optimizer.zero_grad()
output = model(data)
loss_natural = torch.mean(torch.clamp(1 - output.squeeze(1) * target.float(), min=0))
loss_robust = torch.mean(torch.clamp(1 - model(x_adv).squeeze(1) * (model(data).squeeze(1) / args.beta), min=0))
loss = loss_natural + loss_robust
loss.backward()
optimizer.step()
# print progress
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def eval_train(model, device, train_loader):
"""
evaluate model on training data
"""
model.eval()
train_loss = 0
correct = 0
with torch.no_grad():
for data, target in train_loader:
data, target = data.to(device), target.to(device)
output = model(data)
train_loss += torch.sum(torch.clamp(1 - target.float() * output.squeeze(1), min=0))
pred = torch.sign(output).long()
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss /= len(train_loader.dataset)
# print loss and accuracy
print('Training: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
train_loss, correct, len(train_loader.dataset),
100. * correct / len(train_loader.dataset)))
def eval_test(model, device, test_loader):
"""
evaluate model on test data
"""
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += torch.sum(torch.clamp(1 - target.float() * output.squeeze(1), min=0))
pred = torch.sign(output).long()
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Test: Average loss: {:.6f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def eval_adv_test(model, device, test_loader):
"""
evaluate model on test (adversarial) data
"""
model.eval()
adv_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
# use pgd attack on logistic loss
x_perturb_linf = perturb_logistic(net=model, x_nat=data, target=target)
output = model(x_perturb_linf)
# adversarial loss (E[\phi(f(x)f(x'))])
adv_loss += torch.sum(torch.clamp(1 - model(x_perturb_linf).squeeze(1) * (model(data).squeeze(1) / args.beta), min=0))
pred = torch.sign(output).long()
correct += pred.eq(target.view_as(pred)).sum().item()
adv_loss /= len(test_loader.dataset)
print('Test: Average Adv loss: {:.6f}, Robust Accuracy: {}/{} ({:.0f}%)'.format(
adv_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
model = Net_binary().to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
# adversarial training
train(args, model, device, train_loader, optimizer, epoch)
# evaluation on natural and adversarial examples
print('================================================================')
eval_train(model, device, train_loader)
eval_test(model, device, test_loader)
eval_adv_test(model, device, test_loader)
print('================================================================')
if __name__ == '__main__':
main()