-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPALHI.py
162 lines (129 loc) · 5.53 KB
/
PALHI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
# encoding: utf-8
'''
@time: 2020/9/22 10:27
@authors: Fan Yang
@copywrite: Tencent
'''
import os
import gc
import time
import logging
import numpy as np
import pandas as pd
import argparse
import joblib
from xgboost.sklearn import XGBClassifier
parser = argparse.ArgumentParser()
parser.add_argument('--model_folder', default='.')
parser.add_argument('--llh_file', default='pred.csv')
parser.add_argument('--log_file', default='PALHI.log')
parser.add_argument('--model_file', default='palhi.pickle.dat')
args = parser.parse_args()
model_folder = args.model_folder
llh_file = os.path.join(model_folder, args.llh_file)
log_file = os.path.join(model_folder, args.log_file)
model_file = os.path.join(model_folder, args.model_file)
def set_log(logfileName='./dgLog.log', level=logging.INFO):
logging.basicConfig(
level=level, format='%(asctime)s: %(message)s',
handlers=[
logging.FileHandler(logfileName, mode='w'),
logging.StreamHandler()
])
def genPatientIdxDict(patient_ID):
''' generate patient->patches index dict
'''
patient_idx_dict = {}
unique_patient, unique_patient_idx = np.unique(patient_ID, return_index=True)
for p in unique_patient:
patient_idx_dict[p] = np.where(patient_ID == p)[0]
return patient_idx_dict, unique_patient_idx
def loadLikelihood_test(llh_file):
'''
read the likelihood list according to patch_name
llh_file: likelihood file
Sample.ID,PScore,PROI_X,PROI_Y,x,y
Sample.ID: 'TCGA-AA-3510-01A-01-BS1_17858_8929_0.png'
'''
llh_tbl = pd.read_csv(llh_file, header=0, index_col=None)
llh_tbl['patch_name'] = llh_tbl['Sample.ID'].apply(
lambda x: x.split('.')[0])
llh_tbl['Patient_ID'] = llh_tbl['patch_name'].apply(
lambda x: '-'.join(str(x).split('-')[:3]) if x[:4]=='TCGA' else '-'.join(str(x).split('-')[2:5]))
logging.info('We have {:} patients'.format(len(np.unique(llh_tbl['Patient_ID']))))
test_llh_tbl = llh_tbl.sort_values(by=['Patient_ID'])
logging.info('We have {:} patients'.format(len(np.unique(test_llh_tbl['Patient_ID']))))
te_data = {'patient_ID':test_llh_tbl['Patient_ID'].values,
'patch_name':test_llh_tbl['patch_name'].values,
'likelihood':test_llh_tbl['PScore'].values}
return te_data
def genLikelihoodHist(likelihood, patient_ID, num_bin, norm_hist = False):
'''
likelihood: (num_patch, )
patient_ID: (num_patch, )
num_bin: euqal size [0, 1]
norm_hist: whether to normalize each hist
return
patient_hist: (num_unique_patient, num_bin)
unique_patient_idx: (num_unique_patient, )
'''
bins = [-float('Inf')]
bins.extend([i/num_bin for i in range(1, num_bin)])
bins.append(float('Inf'))
patient_idx_dict, unique_patient_idx = genPatientIdxDict(patient_ID)
patient_hist = np.zeros((len(unique_patient_idx), num_bin))
for i in range(len(unique_patient_idx)):
idx = patient_idx_dict[patient_ID[unique_patient_idx[i]]]
patient_hist[i,:] = np.histogram(likelihood[idx], bins = bins)[0]
if norm_hist:
patient_hist[i,:] = patient_hist[i,:] / np.sum(patient_hist[i,:])
return patient_hist, unique_patient_idx
def genWsiDf_test(te_data, te_unique_patient_idx, te_pred_prob, te_pred_label):
''' columns: Sample.ID, Patch.Num, WSI.Score, WSI.pred
'''
wsi_score = np.array(te_pred_prob)
wsi_pred = np.array(te_pred_label)
sample_ID = np.array(te_data['patient_ID'][te_unique_patient_idx])
te_patch_num = np.zeros(len(te_unique_patient_idx), dtype=int)
for i in range(len(te_unique_patient_idx)):
idx = te_data['patient_ID'] == te_data['patient_ID'][te_unique_patient_idx[i]]
te_patch_num[i] = np.sum(idx)
patch_num = np.array(te_patch_num)
wsi_pred_df = pd.DataFrame({'Sample.ID':sample_ID, 'Patch.Num':patch_num,
'WSI.Score':wsi_score, 'WSI.pred':wsi_pred})
return wsi_pred_df
def PALHI_inference(te_data, clf, num_bin=200, norm_hist=False):
''' PAtch Likelihood HIstogram pipeline
tr_data, te_data: dict with 'patient_ID', 'MSI_label', 'MSI_score', 'patch_name', 'likelihood'
cls_model:
num_bin:
norm_hist:
'''
te_patient_hist, te_unique_patient_idx = genLikelihoodHist(te_data['likelihood'], te_data['patient_ID'],
num_bin, norm_hist)
te_pred_label = clf.predict(te_patient_hist)
te_pred_prob = clf.predict_proba(te_patient_hist)[:,1]
gc.collect()
wsi_pred_df = genWsiDf_test(te_data, te_unique_patient_idx, te_pred_prob, te_pred_label)
return wsi_pred_df
if __name__ == "__main__":
''' One file needed
llh_file: .csv file, patch llh generated (Sample.ID (patch png name), PScore)
'''
set_log(log_file)
logging.info('lilelihood file: {:}'.format(os.path.basename(llh_file)))
''' PIPELINE START FROM HERE
'''
te_data = loadLikelihood_test(llh_file)
since = time.time()
clf = XGBClassifier()
clf = joblib.load(os.path.join(model_folder, 'palhi.model'))
wsi_pred_df = PALHI_inference(te_data, clf)
wsi_pred_file, _ = os.path.splitext(log_file)
wsi_pred_file = wsi_pred_file+'_wsi_pred.csv'
wsi_pred_df.to_csv(wsi_pred_file, sep=',', index=False)
time_elapsed = time.time() - since
logging.info('Predicting complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
logging.shutdown()