-
Notifications
You must be signed in to change notification settings - Fork 0
/
opt.py
486 lines (452 loc) · 16.2 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import argparse
import os
import sys
import time
from typing import List, Optional
import prettytable as pt
import torch
import yaml
from termcolor import cprint
def load_dataset_arguments(cfg_path, opt):
if opt.load is None and cfg_path is None:
return
# exclude parameters assigned in the command
if len(sys.argv) > 1:
arguments = sys.argv[1:]
arguments = list(
map(lambda x: x.replace("--", ""), filter(lambda x: "--" in x, arguments))
)
else:
arguments = []
# load parameters in the yaml file
if cfg_path is not None:
opt.load = cfg_path
else:
assert os.path.exists(opt.load)
with open(opt.load, "r") as f:
yaml_arguments = yaml.safe_load(f)
# TODO this should be verified
for k, v in yaml_arguments.items():
if not k in arguments:
setattr(opt, k, v)
def get_opt(cfg_path: Optional[str] = None, additional_parsers: Optional[List] = None):
parents = [get_arguments_parser()]
if additional_parsers:
parents.extend(additional_parsers)
parser = argparse.ArgumentParser(
"Options for training and evaluation", parents=parents, allow_abbrev=False
)
opt = parser.parse_known_args()[0]
# load dataset argument file
load_dataset_arguments(cfg_path, opt)
# user-defined warnings and assertions
if opt.decoder.lower() not in ["c1"]:
cprint("Not supported yet! Check if the output use log_softmax!", "red")
time.sleep(3)
if opt.map_mask_weight > 0.0 or opt.volume_mask_weight > 0.0:
cprint("Mask loss is not 0!", "red")
time.sleep(3)
if opt.val_set != "val":
cprint(f"Evaluating on {opt.val_set} set!", "red")
time.sleep(3)
if opt.mvc_spixel:
assert (
not opt.loss_on_mid_map
), "Middle map supervision is not supported with spixel!"
if "early" in opt.modality:
assert (
len(opt.modality) == 1
), "Early fusion is not supported for multi-modality!"
for modal in opt.modality:
assert modal in [
"rgb",
"srm",
"bayar",
"early",
], f"Unsupported modality {modal}!"
if opt.resume:
assert os.path.exists(opt.resume)
# if opt.mvc_weight <= 0. and opt.consistency_weight > 0.:
# assert opt.consistency_source == 'self', 'Ensemble consistency is not supported when mvc_weight is 0!'
# automatically set parameters
if len(sys.argv) > 1:
arguments = sys.argv[1:]
arguments = list(
map(lambda x: x.replace("--", ""), filter(lambda x: "--" in x, arguments))
)
params = []
for argument in arguments:
if not argument in [
"suffix",
"save_root_path",
"dataset",
"source",
"resume",
"num_workers",
"eval_freq",
"print_freq",
"lr_steps",
"rgb_resume",
"srm_resume",
"bayar_resume",
"teacher_resume",
"occ",
"load",
"amp_opt_level",
"val_shuffle",
"tile_size",
"modality",
]:
try:
value = (
str(eval("opt.{}".format(argument.split("=")[0])))
.replace("[", "")
.replace("]", "")
.replace(" ", "-")
.replace(",", "")
)
params.append(
argument.split("=")[0].replace("_", "").replace(" ", "")
+ "="
+ value
)
except:
cprint("Unknown argument: {}".format(argument), "red")
if "early" in opt.modality:
params.append("modality=early")
test_name = "_".join(params)
else:
test_name = ""
time_stamp = time.strftime("%b-%d-%H-%M-%S", time.localtime())
dir_name = "{}_{}{}_{}".format(
"-".join(list(opt.train_datalist.keys())).upper(),
test_name,
opt.suffix,
time_stamp,
).replace("__", "_")
opt.time_stamp = time_stamp
opt.dir_name = dir_name
opt.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if opt.debug or opt.wholetest:
opt.val_shuffle = True
cprint("Setting val_shuffle to True in debug and wholetest mode!", "red")
time.sleep(3)
if len(opt.modality) < 2 and opt.mvc_weight != 0.0:
opt.mvc_weight = 0.0
cprint(
"Setting multi-view consistency weight to 0. for single modality training",
"red",
)
time.sleep(3)
if "early" in opt.modality:
opt.mvc_single_weight = {"early": 1.0}
else:
if "rgb" not in opt.modality:
opt.mvc_single_weight[0] = 0.0
if "srm" not in opt.modality:
opt.mvc_single_weight[1] = 0.0
if "bayar" not in opt.modality:
opt.mvc_single_weight[2] = 0.0
weight_sum = sum(opt.mvc_single_weight)
single_weight = list(map(lambda x: x / weight_sum, opt.mvc_single_weight))
opt.mvc_single_weight = {
"rgb": single_weight[0],
"srm": single_weight[1],
"bayar": single_weight[2],
}
cprint(
"Change mvc single modality weight to {}".format(opt.mvc_single_weight), "blue"
)
time.sleep(3)
# print parameters
tb = pt.PrettyTable(field_names=["Arguments", "Values"])
for k, v in vars(opt).items():
# some parameters might be too long to display
if k not in ["dir_name", "resume", "rgb_resume", "srm_resume", "bayar_resume"]:
tb.add_row([k, v])
print(tb)
return opt
def get_arguments_parser():
parser = argparse.ArgumentParser(
"CVPR2022 image manipulation detection model", add_help=False
)
parser.add_argument("--debug", action="store_true", default=False)
parser.add_argument("--wholetest", action="store_true", default=False)
parser.add_argument(
"--load", default="configs/final.yaml", help="Load configuration YAML file."
)
parser.add_argument("--num_class", type=int, default=1, help="Use sigmoid.")
# loss-related
parser.add_argument("--map_label_weight", type=float, default=1.0)
parser.add_argument("--volume_label_weight", type=float, default=1.0)
parser.add_argument(
"--map_mask_weight",
type=float,
default=0.0,
help="Only use this for debug purpose.",
)
parser.add_argument(
"--volume_mask_weight",
type=float,
default=0.0,
help="Only use this for debug purpose.",
)
parser.add_argument(
"--consistency_weight",
type=float,
default=0.0,
help="Consitency between output map and volume within a single view.",
)
parser.add_argument(
"--consistency_type", type=str, default="l2", choices=["l1", "l2"]
)
parser.add_argument(
"--consistency_kmeans",
action="store_true",
default=False,
help="Perform k-means on the volume to determine pristine and modified areas.",
)
parser.add_argument(
"--consistency_stop_map_grad",
action="store_true",
default=False,
help="Stop gradient for the map.",
)
parser.add_argument(
"--consistency_source", type=str, default="self", choices=["self", "ensemble"]
)
parser.add_argument("--map_entropy_weight", type=float, default=0.0)
parser.add_argument("--volume_entropy_weight", type=float, default=0.0)
parser.add_argument("--mvc_weight", type=float, default=0.0)
parser.add_argument(
"--mvc_time_dependent",
action="store_true",
default=False,
help="Use Gaussian smooth on the MVCW weight.",
)
parser.add_argument("--mvc_soft", action="store_true", default=False)
parser.add_argument("--mvc_zeros_on_au", action="store_true", default=False)
parser.add_argument(
"--mvc_single_weight",
type=float,
nargs="+",
default=[1.0, 1.0, 1.0],
help="Weight for the RGB, SRM and Bayar modality for MVC training.",
)
parser.add_argument(
"--mvc_steepness", type=float, default=5.0, help="The large the slower."
)
parser.add_argument("--mvc_spixel", action="store_true", default=False)
parser.add_argument("--mvc_num_spixel", type=int, default=100)
parser.add_argument(
"--loss_on_mid_map",
action="store_true",
default=False,
help="This only applies for the output map, but not for the consistency volume.",
)
parser.add_argument(
"--label_loss_on_whole_map",
action="store_true",
default=False,
help="Apply cls loss on the avg(map) for pristine images, instead of max(map).",
)
# network architecture
parser.add_argument("--modality", type=str, default=["rgb"], nargs="+")
parser.add_argument("--srm_clip", type=float, default=5.0)
parser.add_argument("--bayar_magnitude", type=float, default=1.0)
parser.add_argument("--encoder", type=str, default="ResNet50")
parser.add_argument("--encoder_weight", type=str, default="")
parser.add_argument("--decoder", type=str, default="C1")
parser.add_argument("--decoder_weight", type=str, default="")
parser.add_argument(
"--fc_dim",
type=int,
default=2048,
help="Changing this might leads to error in the conjunction between encoder and decoder.",
)
parser.add_argument(
"--volume_block_idx",
type=int,
default=1,
choices=[0, 1, 2, 3],
help="Compute the consistency volume at certain block.",
)
parser.add_argument("--share_embed_head", action="store_true", default=False)
parser.add_argument(
"--fcn_up",
type=int,
default=32,
choices=[8, 16, 32],
help="FCN architecture, 32s, 16s, or 8s.",
)
parser.add_argument("--gem", action="store_true", default=False)
parser.add_argument("--gem_coef", type=float, default=100)
parser.add_argument("--gsm", action="store_true", default=False)
parser.add_argument(
"--map_portion",
type=float,
default=0,
help="Select topk portion of the output map for the image-level classification. 0 for use max.",
)
parser.add_argument("--otsu_sel", action="store_true", default=False)
parser.add_argument("--otsu_portion", type=float, default=1.0)
# training parameters
parser.add_argument("--no_gaussian_blur", action="store_true", default=False)
parser.add_argument("--no_color_jitter", action="store_true", default=False)
parser.add_argument("--no_jpeg_compression", action="store_true", default=False)
parser.add_argument("--resize_aug", action="store_true", default=False)
parser.add_argument(
"--uncorrect_label",
action="store_true",
default=False,
help="This will not correct image-level labels caused by image cropping.",
)
parser.add_argument("--input_size", type=int, default=224)
parser.add_argument("--dropout", type=float, default=0.0)
parser.add_argument(
"--optimizer", type=str, default="adamw", choices=["sgd", "adamw"]
)
parser.add_argument("--resume", type=str, default="")
parser.add_argument("--eval", action="store_true", default=False)
parser.add_argument(
"--val_set",
type=str,
default="val",
choices=["train", "val"],
help="Change to train for debug purpose.",
)
parser.add_argument(
"--val_shuffle", action="store_true", default=False, help="Shuffle val set."
)
parser.add_argument("--save_figure", action="store_true", default=False)
parser.add_argument("--figure_path", type=str, default="figures")
parser.add_argument("--batch_size", type=int, default=36)
parser.add_argument("--epochs", type=int, default=60)
parser.add_argument("--eval_freq", type=int, default=3)
parser.add_argument("--weight_decay", type=float, default=5e-4)
parser.add_argument("--num_workers", type=int, default=36)
parser.add_argument("--grad_clip", type=float, default=0.0)
# lr
parser.add_argument(
"--sched",
default="cosine",
type=str,
metavar="SCHEDULER",
help='LR scheduler (default: "cosine"',
)
parser.add_argument(
"--lr",
type=float,
default=1e-4,
metavar="LR",
help="learning rate (default: 5e-4)",
)
parser.add_argument(
"--lr-noise",
type=float,
nargs="+",
default=None,
metavar="pct, pct",
help="learning rate noise on/off epoch percentages",
)
parser.add_argument(
"--lr-noise-pct",
type=float,
default=0.67,
metavar="PERCENT",
help="learning rate noise limit percent (default: 0.67)",
)
parser.add_argument(
"--lr-noise-std",
type=float,
default=1.0,
metavar="STDDEV",
help="learning rate noise std-dev (default: 1.0)",
)
parser.add_argument(
"--warmup-lr",
type=float,
default=2e-7,
metavar="LR",
help="warmup learning rate (default: 1e-6)",
)
parser.add_argument(
"--min-lr",
type=float,
default=2e-6,
metavar="LR",
help="lower lr bound for cyclic schedulers that hit 0 (1e-5)",
)
parser.add_argument(
"--decay-epochs",
type=float,
default=20,
metavar="N",
help="epoch interval to decay LR",
)
parser.add_argument(
"--warmup-epochs",
type=int,
default=5,
metavar="N",
help="epochs to warmup LR, if scheduler supports",
)
parser.add_argument(
"--cooldown-epochs",
type=int,
default=5,
metavar="N",
help="epochs to cooldown LR at min_lr, after cyclic schedule ends",
)
parser.add_argument(
"--patience-epochs",
type=int,
default=5,
metavar="N",
help="patience epochs for Plateau LR scheduler (default: 10",
)
parser.add_argument(
"--decay-rate",
"-dr",
type=float,
default=0.5,
metavar="RATE",
help="LR decay rate (default: 0.1)",
)
parser.add_argument("--lr_cycle_limit", "-lcl", type=int, default=1)
parser.add_argument("--lr_cycle_mul", "-lcm", type=float, default=1)
# inference hyperparameters
parser.add_argument("--mask_threshold", type=float, default=0.5)
parser.add_argument(
"-lis",
"--large_image_strategy",
choices=["rescale", "slide", "none"],
default="slide",
help="Slide will get better performance than rescale.",
)
parser.add_argument(
"--tile_size",
type=int,
default=768,
help="If the testing image is larger than tile_size, I will use sliding window to do the inference.",
)
parser.add_argument("--tile_overlap", type=float, default=0.1)
parser.add_argument("--spixel_postproc", action="store_true", default=False)
parser.add_argument("--convcrf_postproc", action="store_true", default=False)
parser.add_argument("--convcrf_shape", type=int, default=512)
parser.add_argument("--crf_postproc", action="store_true", default=False)
parser.add_argument("--max_pool_postproc", type=int, default=1)
parser.add_argument("--crf_downsample", type=int, default=1)
parser.add_argument("--crf_iter_max", type=int, default=5)
parser.add_argument("--crf_pos_w", type=int, default=3)
parser.add_argument("--crf_pos_xy_std", type=int, default=1)
parser.add_argument("--crf_bi_w", type=int, default=4)
parser.add_argument("--crf_bi_xy_std", type=int, default=67)
parser.add_argument("--crf_bi_rgb_std", type=int, default=3)
# save
parser.add_argument("--save_root_path", type=str, default="tmp")
parser.add_argument("--suffix", type=str, default="")
parser.add_argument("--print_freq", type=int, default=100)
# misc
parser.add_argument("--seed", type=int, default=1)
return parser