forked from wanghsinwei/isic-2019
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_model_param.py
67 lines (64 loc) · 3.91 KB
/
base_model_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from typing import NamedTuple
from types import FunctionType
# from keras.applications.densenet import preprocess_input as preprocess_input_densenet
# from keras_applications.resnext import preprocess_input as preprocess_input_resnext
from keras.applications.xception import preprocess_input as preprocess_input_xception
from keras.applications.nasnet import preprocess_input as preprocess_input_nasnet
from keras.applications.inception_resnet_v2 import preprocess_input as preprocess_input_inception_resnet_v2
from utils import preprocess_input as preprocess_input_trainset, preprocess_input_2 as preprocess_input_trainset_2
BaseModelParam = NamedTuple('BaseModelParam', [
('module_name', str),
('class_name', str),
('input_size', tuple),
('preprocessing_func', FunctionType)
])
def get_transfer_model_param_map():
"""For approach 1"""
base_model_params = {
'DenseNet201': BaseModelParam(module_name='keras.applications.densenet',
class_name='DenseNet201',
input_size=(224, 224),
preprocessing_func=preprocess_input_trainset),
'Xception': BaseModelParam(module_name='keras.applications.xception',
class_name='Xception',
input_size=(299, 299),
preprocessing_func=preprocess_input_xception),
'NASNetLarge': BaseModelParam(module_name='keras.applications.nasnet',
class_name='NASNetLarge',
input_size=(331, 331),
preprocessing_func=preprocess_input_nasnet),
'InceptionResNetV2': BaseModelParam(module_name='keras.applications.inception_resnet_v2',
class_name='InceptionResNetV2',
input_size=(299, 299),
preprocessing_func=preprocess_input_inception_resnet_v2),
'ResNeXt50': BaseModelParam(module_name='keras_applications.resnext',
class_name='ResNeXt50',
input_size=(224, 224),
preprocessing_func=preprocess_input_trainset)
}
return base_model_params
def get_transfer_model_param_map_2():
"""For approach 2"""
base_model_params = {
'DenseNet201': BaseModelParam(module_name='keras.applications.densenet',
class_name='DenseNet201',
input_size=(224, 224),
preprocessing_func=preprocess_input_trainset_2),
'Xception': BaseModelParam(module_name='keras.applications.xception',
class_name='Xception',
input_size=(299, 299),
preprocessing_func=preprocess_input_xception),
'NASNetLarge': BaseModelParam(module_name='keras.applications.nasnet',
class_name='NASNetLarge',
input_size=(331, 331),
preprocessing_func=preprocess_input_nasnet),
'InceptionResNetV2': BaseModelParam(module_name='keras.applications.inception_resnet_v2',
class_name='InceptionResNetV2',
input_size=(299, 299),
preprocessing_func=preprocess_input_inception_resnet_v2),
'ResNeXt50': BaseModelParam(module_name='keras_applications.resnext',
class_name='ResNeXt50',
input_size=(224, 224),
preprocessing_func=preprocess_input_trainset_2)
}
return base_model_params