-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain.py
202 lines (169 loc) · 8.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Entry point for training and testing IMU transformers for activity recognition
"""
import argparse
import torch
import numpy as np
import json
import logging
from util import utils
from os.path import join
from models.IMUTransformerEncoder import IMUTransformerEncoder
from models.IMUCLSBaseline import IMUCLSBaseline
from util.IMUDataset import IMUDataset
from sklearn.metrics import confusion_matrix
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("mode", help="train or test")
arg_parser.add_argument("imu_dataset_file", help="path to a file mapping imu samples to labels")
arg_parser.add_argument("--checkpoint_path",
help="path to a pre-trained model")
arg_parser.add_argument("--experiment", help="a short string to describe the experiment/commit used")
args = arg_parser.parse_args()
utils.init_logger()
# Record execution details
logging.info("Start {}ing IMU-transformers".format(args.mode))
if args.experiment is not None:
logging.info("Experiment details: {}".format(args.experiment))
logging.info("Using imu dataset file: {}".format(args.imu_dataset_file))
# Read configuration
with open('config.json', "r") as read_file:
config = json.load(read_file)
logging.info("Running with configuration:\n{}".format(
'\n'.join(["\t{}: {}".format(k, v) for k, v in config.items()])))
# Set the seeds and the device
use_cuda = torch.cuda.is_available()
device_id = 'cpu'
torch_seed = 0
numpy_seed = 2
torch.manual_seed(torch_seed)
if use_cuda:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device_id = config.get('device_id')
np.random.seed(numpy_seed)
device = torch.device(device_id)
if config.get("use_baseline"):
model = IMUCLSBaseline(config).to(device)
else:
model = IMUTransformerEncoder(config).to(device)
# Load the checkpoint if needed
if args.checkpoint_path:
model.load_state_dict(torch.load(args.checkpoint_path, map_location=device_id))
logging.info("Initializing from checkpoint: {}".format(args.checkpoint_path))
if args.mode == 'train':
# Set to train mode
model.train()
# Set the loss
loss = torch.nn.NLLLoss()
# Set the optimizer and scheduler
optim = torch.optim.Adam(model.parameters(),
lr=config.get('lr'),
eps=config.get('eps'),
weight_decay=config.get('weight_decay'))
scheduler = torch.optim.lr_scheduler.StepLR(optim,
step_size=config.get('lr_scheduler_step_size'),
gamma=config.get('lr_scheduler_gamma'))
# Set the dataset and data loader
logging.info("Start train data preparation")
window_shift = config.get("window_shift")
window_size = config.get("window_size")
input_size = config.get("input_dim")
dataset = IMUDataset(args.imu_dataset_file, window_size, input_size, window_shift)
loader_params = {'batch_size': config.get('batch_size'),
'shuffle': True,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(dataset, **loader_params)
logging.info("Data preparation completed")
# Get training details
n_freq_print = config.get("n_freq_print")
n_freq_checkpoint = config.get("n_freq_checkpoint")
n_epochs = config.get("n_epochs")
# Train
checkpoint_prefix = join(utils.create_output_dir('out'),utils.get_stamp_from_log())
n_total_samples = 0.0
loss_vals = []
sample_count = []
logging.info("Start training")
for epoch in range(n_epochs):
for batch_idx, minibatch in enumerate(dataloader):
minibatch["imu"] = minibatch["imu"].to(device).to(dtype=torch.float32)
label = minibatch.get('label').to(device).to(dtype=torch.long)
batch_size = label.shape[0]
n_total_samples += batch_size
# Zero the gradients
optim.zero_grad()
# Forward pass
res = model(minibatch)
# Compute loss
criterion = loss(res, label)
# Collect for recoding and plotting
batch_loss = criterion.item()
loss_vals.append(batch_loss)
sample_count.append(n_total_samples)
# Back prop
criterion.backward()
optim.step()
# Record loss on train set
if batch_idx % n_freq_print == 0:
logging.info("[Batch-{}/Epoch-{}] batch loss: {:.3f}".format(
batch_idx+1, epoch+1,
batch_loss))
# Save checkpoint
if (epoch % n_freq_checkpoint) == 0 and epoch > 0:
torch.save(model.state_dict(), checkpoint_prefix + '_checkpoint-{}.pth'.format(epoch))
# Scheduler update
scheduler.step()
logging.info('Training completed')
torch.save(model.state_dict(), checkpoint_prefix + '_final.pth'.format(epoch))
# Plot the loss function
#loss_fig_path = checkpoint_prefix + "_loss_fig.png"
#utils.plot_loss_func(sample_count, loss_vals, loss_fig_path)
else: # Test
# Set to eval mode
model.eval()
# Set the dataset and data loader
logging.info("Start test data preparation")
window_shift = config.get("window_shift")
window_size = config.get("window_size")
input_size = config.get("input_dim")
dataset = IMUDataset(args.imu_dataset_file, window_size, input_size,
window_shift)
loader_params = {'batch_size': 1,
'shuffle': False,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(dataset, **loader_params)
logging.info("Data preparation completed")
metric = []
logging.info("Start testing")
accuracy_per_label = np.zeros(config.get("num_classes"))
count_per_label = np.zeros(config.get("num_classes"))
predicted = []
ground_truth = []
with torch.no_grad():
for i, minibatch in enumerate(dataloader, 0):
minibatch["imu"] = minibatch["imu"].to(device).to(dtype=torch.float32)
label = minibatch.get('label').to(device).to(dtype=torch.long)
# Forward pass
res = model(minibatch)
# Evaluate and append
pred_label = torch.argmax(res)
predicted.append(pred_label.cpu().numpy())
ground_truth.append( label[0].item())
curr_metric = (pred_label==label).to(torch.int)
label_id = label[0].item()
accuracy_per_label[label_id] += curr_metric.item()
count_per_label[label_id] += 1
metric.append(curr_metric.item())
# Record overall statistics
stats_msg = "Performance of {} on {}".format(args.checkpoint_path, args.imu_dataset_file)
confusion_mat = confusion_matrix(ground_truth, predicted, labels = list(range(config.get("num_classes"))))
print(confusion_mat.shape)
stats_msg = stats_msg + "\n\tAccuracy: {:.3f}".format(np.mean(metric))
accuracies = []
for i in range(len(accuracy_per_label)):
print("Performance for class [{}] - accuracy {:.3f}".format(i, accuracy_per_label[i]/count_per_label[i]))
accuracies.append(accuracy_per_label[i]/count_per_label[i])
# save dump
np.savez(args.checkpoint_path + "_test_results_dump", confusion_mat = confusion_mat, accuracies = accuracies, count_per_label=count_per_label, total_acc = np.mean(metric))
logging.info(stats_msg)