-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_data.py
executable file
·295 lines (259 loc) · 9.65 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import csv
import numpy as np
import os
import re
import itertools
import pickle
import nltk
from collections import Counter
from os.path import join
from nltk import tokenize
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer, TfidfVectorizer
from keras.preprocessing.sequence import pad_sequences
from tree import ClassNode
def read_file(dataset, with_eval="All"):
class_tree = ClassNode("ROOT",None,-1)
hier_file = open(f"./{dataset}/label_hier.txt", 'r')
contents = hier_file.readlines()
cnt = 0
for line in contents:
line = line.split("\n")[0]
line = line.split("\t")
parent = line[0]
children = line[1:]
for child in children:
parent_node = class_tree.find(parent)
class_tree.find_add_child(parent, ClassNode(child, parent_node))
cnt += 1
# assign labels to classes in class tree
offset = 0
for i in range(1, class_tree.get_height()+1):
nodes = class_tree.find_at_level(i)
for node in nodes:
node.label = offset
offset += 1
n_classes = class_tree.get_size() - 1
print(f'Total number of classes: {n_classes}')
print(class_tree.visualize_tree())
infile = open(f'./{dataset}/dataset.txt', mode='r', encoding='utf-8')
data = infile.readlines()
if with_eval == "All":
infile = open(f'./{dataset}/labels.txt', mode='r', encoding='utf-8')
labels = infile.readlines()
y = []
for line in labels:
label = line.split('\n')[0]
current = np.zeros(n_classes)
for i in class_tree.name2label(label):
current[i] = 1.0
y.append(current)
y = np.asarray(y)
assert len(data) == len(y)
elif with_eval == "Subset":
infile = open(f'./{dataset}/labels_sub.txt', mode='r', encoding='utf-8')
labels = infile.readlines()
y = {}
for line in labels:
label = line.split('\n')[0]
class_name = label.split('\t')[0]
doc_ids = label.split('\t')[1]
doc_ids = [int(doc_id) for doc_id in doc_ids.split(' ')]
for doc_id in doc_ids:
current = np.zeros(n_classes)
for i in class_tree.name2label(class_name):
current[i] = 1.0
y[doc_id] = current
else:
y = None
return data, y, class_tree
def clean_str(string):
string = re.sub(r"[^A-Za-z0-9(),.!?\"\'-]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\"", " \" ", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'m", " \'m", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"\.", " . ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\$", " $ ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def preprocess_doc(data):
data = [s.strip() for s in data]
data = [clean_str(s) for s in data]
return data
def pad_docs(sentences, pad_len=None, padding_word="<PAD/>"):
if pad_len is not None:
sequence_length = pad_len
else:
sequence_length = max(len(x) for x in sentences)
padded_sentences = []
for sentence in sentences:
num_padding = sequence_length - len(sentence)
new_sentence = sentence + [padding_word] * num_padding
padded_sentences.append(new_sentence)
return padded_sentences
def build_vocab(sentences, common_words):
# Build vocabulary
word_counts = Counter(itertools.chain(*sentences))
# Mapping from index to word
vocabulary_inv = [x[0] for x in word_counts.most_common()]
# Mapping from word to index
vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}
trim_vocabulary = {}
for i, x in enumerate(vocabulary_inv):
if i < common_words:
trim_vocabulary[x] = i
else:
trim_vocabulary[x] = common_words
return word_counts, vocabulary, vocabulary_inv, trim_vocabulary
def build_sequence(flat_data, vocabulary, truncate_len):
flat_data = build_input_data(flat_data, vocabulary)
sequences = []
for seq in flat_data:
for i in range(1, len(seq)):
sequence = seq[:i+1]
sequences.append(sequence)
sequences = pad_sequences(sequences, maxlen=truncate_len, padding='pre')
print(f'Sequences shape: {sequences.shape}')
return sequences
def build_input_data(sentences, vocabulary):
x = [[vocabulary[word] for word in sentence] for sentence in sentences]
return x
def extract_keywords(data_path, class_tree, class_type, vocabulary, num_seed_doc, num_keywords, data, perm):
data = [' '.join(line) for line in data]
tfidf = TfidfVectorizer(norm='l2', sublinear_tf=True, max_df=0.2, stop_words='english',
token_pattern=r'(?u)\b\w[\w-]*\w\b', max_features=10000)
print("\n### Supervision type: Labeled documents ###")
file_name = f'doc_id.txt'
infile = open(join(data_path, file_name), mode='r', encoding='utf-8')
text = infile.readlines()
for line in text:
line = line.split('\n')[0]
class_name, doc_ids = line.split('\t')
cur_node = class_tree.find(class_name)
assert cur_node, f"Class {class_name} not exist in class tree!"
seed_idx = doc_ids.split()
seed_idx = [int(idx) for idx in seed_idx]
cur_node.sup_idx = seed_idx
print("Extracted keywords for each class: ")
max_level = class_tree.get_height()
for level in reversed(range(1, max_level+1)):
nodes = class_tree.find_at_level(level)
all_idx = []
for node in nodes:
if node.children == []:
assert node.sup_idx, f"{node.name} has no labeled documents!"
node.parent.sup_idx += node.sup_idx
all_idx += node.sup_idx
data_level = [data[idx] for idx in all_idx]
x_level = tfidf.fit_transform(data_level)
vocab_dict = tfidf.vocabulary_
vocab_inv_dict = {v: k for k, v in vocab_dict.items()}
cum_cnt = 0
for node in nodes:
x_node = x_level[cum_cnt:cum_cnt + len(node.sup_idx)].todense()
cum_cnt += len(node.sup_idx)
class_vec = np.average(x_node, axis=0)
class_vec = np.ravel(class_vec)
sort_idx = np.argsort(class_vec)[::-1]
keyword = []
if class_type == 'topic':
j = 0
k = 0
while j < num_keywords:
w = vocab_inv_dict[sort_idx[k]]
if w in vocabulary:
keyword.append(vocab_inv_dict[sort_idx[k]])
j += 1
k += 1
elif class_type == 'sentiment':
j = 0
k = 0
while j < num_keywords:
w = vocab_inv_dict[sort_idx[k]]
w, t = nltk.pos_tag([w])[0]
if t.startswith("J") and w in vocabulary:
keyword.append(w)
j += 1
k += 1
print(f'{node.name}: {keyword}')
node.add_keywords(keyword)
def load_keywords(data_path, class_tree):
file_name = 'keywords.txt'
print("\n### Supervision type: Class-related Keywords ###")
infile = open(join(data_path, file_name), mode='r', encoding='utf-8')
text = infile.readlines()
for line in text:
line = line.split('\n')[0]
class_name, keywords = line.split('\t')
keywords = keywords.split()
class_tree.find_add_keywords(class_name, keywords)
class_tree.aggregate_keywords()
def load_dataset(dataset_name, sup_source, num_seed_doc=10, common_words=10000, truncate_doc_len=None, truncate_sent_len=None, with_eval=True):
data_path = './' + dataset_name
data, y, class_tree = read_file(dataset_name, with_eval=with_eval)
np.random.seed(1234)
data = preprocess_doc(data)
data = [s.split(" ") for s in data]
trun_data = [s[:truncate_doc_len] for s in data]
tmp_list = [len(doc) for doc in data]
len_max = max(tmp_list)
len_avg = np.average(tmp_list)
len_std = np.std(tmp_list)
print("\n### Dataset statistics - Documents: ###")
print(f'Document max length: {len_max} (words)')
print(f'Document average length: {len_avg} (words)')
print(f'Document length std: {len_std} (words)')
if truncate_doc_len is None:
truncate_doc_len = min(int(len_avg + 3*len_std), len_max)
print(f"Defined maximum document length: {truncate_doc_len} (words)")
print(f'Fraction of truncated documents: {sum(tmp > truncate_doc_len for tmp in tmp_list)/len(tmp_list)}')
sequences_padded = pad_docs(trun_data, pad_len=truncate_doc_len)
word_counts, vocabulary, vocabulary_inv, trim_vocabulary = build_vocab(sequences_padded, common_words)
print(f"Vocabulary Size: {len(vocabulary_inv):d}")
x = build_input_data(sequences_padded, vocabulary)
x = np.array(x)
# Prepare sentences for training LSTM language model
trun_data = [" ".join(doc) for doc in trun_data]
flat_data = [tokenize.sent_tokenize(doc) for doc in trun_data]
flat_data = [sent for doc in flat_data for sent in doc]
flat_data = [sent for sent in flat_data if len(sent.split(" ")) > 5]
tmp_list = [len(sent.split(" ")) for sent in flat_data]
max_sent_len = max(tmp_list)
avg_sent_len = np.average(tmp_list)
std_sent_len = np.std(tmp_list)
if truncate_sent_len is None:
truncate_sent_len = min(int(avg_sent_len + 3*std_sent_len), max_sent_len)
print("\n### Dataset statistics - Sentences: ###")
print(f'Sentence max length: {max_sent_len} (words)')
print(f'Sentence average length: {avg_sent_len} (words)')
print(f"Defined maximum sentence length: {truncate_sent_len} (words)")
print(f'Fraction of truncated sentences: {sum(tmp > truncate_sent_len for tmp in tmp_list)/len(tmp_list)}')
flat_data = [s.split(" ") for s in flat_data]
sequences = build_sequence(flat_data, trim_vocabulary, truncate_sent_len)
perm = np.random.permutation(len(x))
if sup_source == 'keywords':
load_keywords(data_path, class_tree)
elif sup_source == 'docs':
class_type = 'topic'
num_keywords = 10
extract_keywords(data_path, class_tree, class_type, vocabulary, num_seed_doc, num_keywords, data, perm)
x = x[perm]
if y is not None:
if type(y) == dict:
inv_perm = {k: v for v, k in enumerate(perm)}
perm_y = {}
for doc_id in y:
perm_y[inv_perm[doc_id]] = y[doc_id]
y = perm_y
else:
y = y[perm]
return x, y, sequences, class_tree, word_counts, vocabulary, vocabulary_inv, len_avg, len_std, perm