-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
executable file
·424 lines (380 loc) · 15.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import numpy as np
np.random.seed(1234)
import os
from time import time
import csv
import keras.backend as K
from keras.engine.topology import Layer
from keras.layers import Dense, Input, Convolution1D, Embedding, GlobalMaxPooling1D, LSTM, Multiply, Lambda, Activation
from keras.layers.merge import Concatenate
from keras.models import Model
from keras import initializers, regularizers, constraints
from keras.initializers import RandomUniform
from utils import f1
from scipy.stats import entropy
def LSTMLanguageModel(input_shape, word_embedding_dim, vocab_sz, hidden_dim, embedding_matrix):
x = Input(shape=(input_shape,), name='input')
z = Embedding(vocab_sz, word_embedding_dim, input_length=input_shape, weights=[embedding_matrix], trainable=False)(x)
z = LSTM(hidden_dim, activation='relu', return_sequences=True)(z)
z = LSTM(hidden_dim, activation='relu')(z)
z = Dense(vocab_sz, activation='softmax')(z)
model = Model(inputs=x, outputs=z)
model.summary()
return Model(inputs=x, outputs=z)
def ConvolutionLayer(x, input_shape, n_classes, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False,
vocab_sz=None,
embedding_matrix=None, word_embedding_dim=100, hidden_dim=100, act='relu', init='ones'):
if embedding_matrix is not None:
z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,),
weights=[embedding_matrix], trainable=word_trainable)(x)
else:
z = Embedding(vocab_sz, word_embedding_dim, input_length=(input_shape,), trainable=word_trainable)(x)
conv_blocks = []
for sz in filter_sizes:
conv = Convolution1D(filters=num_filters,
kernel_size=sz,
padding="valid",
activation=act,
strides=1,
kernel_initializer=init)(z)
conv = GlobalMaxPooling1D()(conv)
conv_blocks.append(conv)
z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
z = Dense(hidden_dim, activation="relu")(z)
y = Dense(n_classes, activation="softmax")(z)
return Model(inputs=x, outputs=y)
def IndexLayer(idx):
def func(x):
return x[:, idx]
return Lambda(func)
def ExpanLayer(dim):
def func(x):
return K.expand_dims(x, dim)
return Lambda(func)
class WSTC(object):
def __init__(self,
input_shape,
class_tree,
max_level,
sup_source,
init=RandomUniform(minval=-0.01, maxval=0.01),
y=None,
vocab_sz=None,
word_embedding_dim=100,
blocking_perc=0,
block_thre=1.0,
block_level=1,
):
super(WSTC, self).__init__()
self.input_shape = input_shape
self.class_tree = class_tree
self.y = y
if type(y) == dict:
self.eval_set = np.array([ele for ele in y])
else:
self.eval_set = None
self.vocab_sz = vocab_sz
self.block_level = block_level
self.block_thre = block_thre
self.block_label = {}
self.siblings_map = {}
self.x = Input(shape=(input_shape[1],), name='input')
self.model = []
self.sup_dict = {}
if sup_source == 'docs':
n_classes = class_tree.get_size() - 1
leaves = class_tree.find_leaves()
for leaf in leaves:
current = np.zeros(n_classes)
for i in class_tree.name2label(leaf.name):
current[i] = 1.0
for idx in leaf.sup_idx:
self.sup_dict[idx] = current
def instantiate(self, class_tree, filter_sizes=[2, 3, 4, 5], num_filters=20, word_trainable=False,
word_embedding_dim=100, hidden_dim=20, act='relu', init=RandomUniform(minval=-0.01, maxval=0.01)):
num_children = len(class_tree.children)
if num_children <= 1:
class_tree.model = None
else:
class_tree.model = ConvolutionLayer(self.x, self.input_shape[1], filter_sizes=filter_sizes,
n_classes=num_children,
vocab_sz=self.vocab_sz, embedding_matrix=class_tree.embedding,
hidden_dim=hidden_dim,
word_embedding_dim=word_embedding_dim, num_filters=num_filters,
init=init,
word_trainable=word_trainable, act=act)
def ensemble(self, class_tree, level, input_shape, parent_output):
outputs = []
if class_tree.model:
y_curr = class_tree.model(self.x)
if parent_output is not None:
y_curr = Multiply()([parent_output, y_curr])
else:
y_curr = parent_output
if level == 0:
outputs.append(y_curr)
else:
for i, child in enumerate(class_tree.children):
outputs += self.ensemble(child, level - 1, input_shape, IndexLayer(i)(y_curr))
return outputs
def ensemble_classifier(self, level):
outputs = self.ensemble(self.class_tree, level, self.input_shape[1], None)
outputs = [ExpanLayer(-1)(output) if len(output.get_shape()) < 2 else output for output in outputs]
z = Concatenate()(outputs) if len(outputs) > 1 else outputs[0]
return Model(inputs=self.x, outputs=z)
def pretrain(self, x, pretrain_labels, model, optimizer='adam',
loss='kld', epochs=200, batch_size=256, save_dir=None, suffix=''):
model.compile(optimizer=optimizer, loss=loss)
t0 = time()
print('\nPretraining...')
model.fit(x, pretrain_labels, batch_size=batch_size, epochs=epochs)
print(f'Pretraining time: {time() - t0:.2f}s')
if save_dir is not None:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model.save_weights(f'{save_dir}/pretrained_{suffix}.h5')
def load_weights(self, weights, level):
print(f'Loading weights @ level {level}')
self.model[level].load_weights(weights)
def load_pretrain(self, weights, model):
model.load_weights(weights)
def extract_label(self, y, level):
if type(level) is int:
relevant_nodes = self.class_tree.find_at_level(level)
relevant_labels = [relevant_node.label for relevant_node in relevant_nodes]
else:
relevant_labels = []
for i in level:
relevant_nodes = self.class_tree.find_at_level(i)
relevant_labels += [relevant_node.label for relevant_node in relevant_nodes]
if type(y) is dict:
y_ret = {}
for key in y:
y_ret[key] = y[key][relevant_labels]
else:
y_ret = y[:, relevant_labels]
return y_ret
def predict(self, x, level):
q = self.model[level].predict(x, verbose=0)
return q.argmax(1)
def expand_pred(self, q_pred, level, cur_idx):
y_expanded = np.zeros((self.input_shape[0], q_pred.shape[1]))
if level not in self.siblings_map:
self.siblings_map[level] = self.class_tree.siblings_at_level(level)
siblings_map = self.siblings_map[level]
block_idx = []
for i, q in enumerate(q_pred):
pred = np.argmax(q)
idx = cur_idx[i]
if level >= self.block_level and self.block_thre < 1.0 and idx not in self.sup_dict:
siblings = siblings_map[pred]
siblings_pred = q[siblings]/np.sum(q[siblings])
if len(siblings) >= 2:
conf_val = entropy(siblings_pred)/np.log(len(siblings))
else:
conf_val = 0
if conf_val > self.block_thre:
block_idx.append(idx)
else:
y_expanded[idx,pred] = 1.0
else:
y_expanded[idx,pred] = 1.0
if self.block_label:
blocked = [idx for idx in self.block_label]
blocked_labels = np.array([label for label in self.block_label.values()])
blocked_labels = self.extract_label(blocked_labels, level+1)
y_expanded[blocked,:] = blocked_labels
return y_expanded, block_idx
def aggregate_pred(self, q_all, level, block_idx, cur_idx, agg="All"):
leaves = self.class_tree.find_at_level(level+1)
leaves_labels = [leaf.label for leaf in leaves]
parents = self.class_tree.find_at_level(level)
parents_labels = [parent.label for parent in parents]
ancestor_dict = {}
for leaf in leaves:
ancestors = leaf.find_ancestors()
ancestor_dict[leaf.label] = [ancestor.label for ancestor in ancestors]
for parent in parents:
ancestors = parent.find_ancestors()
ancestor_dict[parent.label] = [ancestor.label for ancestor in ancestors]
y_leaf = np.argmax(q_all[:, leaves_labels], axis=1)
y_leaf = [leaves_labels[y] for y in y_leaf]
if level > 0:
y_parents = np.argmax(q_all[:, parents_labels], axis=1)
y_parents = [parents_labels[y] for y in y_parents]
if agg == "Subset" and self.eval_set is not None:
cur_eval = [ele for ele in self.eval_set if ele in cur_idx]
inv_cur_idx = {i:idx for idx, i in enumerate(cur_idx)}
y_aggregate = np.zeros((len(cur_eval), q_all.shape[1]))
for i, raw_idx in enumerate(cur_eval):
idx = inv_cur_idx[raw_idx]
if raw_idx not in block_idx:
y_aggregate[i, y_leaf[idx]] = 1.0
for ancestor in ancestor_dict[y_leaf[idx]]:
y_aggregate[i, ancestor] = 1.0
else:
if level > 0:
y_aggregate[i, y_parents[idx]] = 1.0
for ancestor in ancestor_dict[y_parents[idx]]:
y_aggregate[i, ancestor] = 1.0
else:
y_aggregate = np.zeros((self.input_shape[0], q_all.shape[1]))
for i in range(len(q_all)):
idx = cur_idx[i]
if idx not in block_idx:
y_aggregate[idx, y_leaf[i]] = 1.0
for ancestor in ancestor_dict[y_leaf[i]]:
y_aggregate[idx, ancestor] = 1.0
else:
if level > 0:
y_aggregate[idx, y_parents[i]] = 1.0
for ancestor in ancestor_dict[y_parents[i]]:
y_aggregate[idx, ancestor] = 1.0
if self.block_label:
blocked = [idx for idx in self.block_label]
blocked_labels = np.array([label for label in self.block_label.values()])
blocked_labels = self.extract_label(blocked_labels, range(1, level+2))
y_aggregate[blocked, :] = blocked_labels
return y_aggregate
def record_block(self, block_idx, y_pred_agg):
n_classes = self.class_tree.get_size() - 1
for idx in block_idx:
self.block_label[idx] = np.zeros(n_classes)
self.block_label[idx][:len(y_pred_agg[idx])] = y_pred_agg[idx]
def target_distribution(self, q, nonblock, sup_level, power=2):
q = q[nonblock]
weight = q ** power / q.sum(axis=0)
p = (weight.T / weight.sum(axis=1)).T
inv_nonblock = {k:v for v,k in enumerate(nonblock)}
for i in sup_level:
mapped_i = inv_nonblock[i]
p[mapped_i] = sup_level[i]
return p
def compile(self, level, optimizer='sgd', loss='kld'):
self.model[level].compile(optimizer=optimizer, loss=loss)
# print(f"\nLevel {level} model summary: ")
# self.model[level].summary()
def fit(self, x, level, maxiter=5e4, batch_size=256, tol=0.1, power=2,
update_interval=100, save_dir=None, save_suffix=''):
model = self.model[level]
print(f'Update interval: {update_interval}')
cur_idx = np.array([idx for idx in range(x.shape[0]) if idx not in self.block_label])
x = x[cur_idx]
y = self.y
# logging files
if not os.path.exists(save_dir):
os.makedirs(save_dir)
logfiles = []
logwriters = []
for i in range(level+2):
if i <= level:
logfile = open(save_dir + f'/self_training_log_level_{i}{save_suffix}.csv', 'w')
else:
logfile = open(save_dir + f'/self_training_log_all{save_suffix}.csv', 'w')
logwriter = csv.DictWriter(logfile, fieldnames=['iter', 'f1_macro', 'f1_micro'])
logwriter.writeheader()
logfiles.append(logfile)
logwriters.append(logwriter)
index = 0
if y is not None:
if self.eval_set is not None:
cur_eval = [idx for idx in self.eval_set if idx in cur_idx]
y = np.array([y[idx] for idx in cur_eval])
y_all = []
label_all = []
for i in range(level+1):
y_curr = self.extract_label(y, i+1)
y_all.append(y_curr)
nodes = self.class_tree.find_at_level(i+1)
label_all += [node.label for node in nodes]
y = y[:, label_all]
mapped_sup_dict_level = {}
if len(self.sup_dict) > 0:
sup_dict_level = self.extract_label(self.sup_dict, level+1)
inv_cur_idx = {i:idx for idx, i in enumerate(cur_idx)}
for key in sup_dict_level:
mapped_sup_dict_level[inv_cur_idx[key]] = sup_dict_level[key]
for ite in range(int(maxiter)):
try:
if ite % update_interval == 0:
print(f'\nIter {ite}: ')
y_pred_all = []
q_all = np.zeros((len(x), 0))
for i in range(level+1):
q_i = self.model[i].predict(x)
q_all = np.concatenate((q_all, q_i), axis=1)
y_pred_i, block_idx = self.expand_pred(q_i, i, cur_idx)
y_pred_all.append(y_pred_i)
q = q_i
y_pred = y_pred_i
if len(block_idx) > 0:
print(f'Number of blocked documents back to level {level}: {len(block_idx)}')
y_pred_agg = self.aggregate_pred(q_all, level, block_idx, cur_idx)
if y is not None:
if self.eval_set is not None:
y_pred_agg = self.aggregate_pred(q_all, level, block_idx, cur_idx, agg="Subset")
y_pred_all = [y_pred[cur_eval, :] for y_pred in y_pred_all]
for i in range(level+1):
f1_macro, f1_micro = np.round(f1(y_all[i], y_pred_all[i]), 5)
print(f'Evaluated at subset of size {len(cur_eval)}: f1_macro = {f1_macro}, f1_micro = {f1_micro} @ level {i+1}')
logdict = dict(iter=ite, f1_macro=f1_macro, f1_micro=f1_micro)
logwriters[i].writerow(logdict)
f1_macro, f1_micro = np.round(f1(y, y_pred_agg), 5)
logdict = dict(iter=ite, f1_macro=f1_macro, f1_micro=f1_micro)
logwriters[-1].writerow(logdict)
print(f'Evaluated at subset of size {len(cur_eval)}: f1_macro = {f1_macro}, f1_micro = {f1_micro} @ all classes')
else:
y_pred_agg = self.aggregate_pred(q_all, level, block_idx, cur_idx)
for i in range(level+1):
f1_macro, f1_micro = np.round(f1(y_all[i], y_pred_all[i]), 5)
print(f'f1_macro = {f1_macro}, f1_micro = {f1_micro} @ level {i+1}')
logdict = dict(iter=ite, f1_macro=f1_macro, f1_micro=f1_micro)
logwriters[i].writerow(logdict)
f1_macro, f1_micro = np.round(f1(y, y_pred_agg), 5)
logdict = dict(iter=ite, f1_macro=f1_macro, f1_micro=f1_micro)
logwriters[-1].writerow(logdict)
print(f'f1_macro = {f1_macro}, f1_micro = {f1_micro} @ all classes')
nonblock = np.array(list(set(range(x.shape[0])) - set(block_idx)))
x_nonblock = x[nonblock]
p_nonblock = self.target_distribution(q, nonblock, mapped_sup_dict_level, power)
if ite > 0:
change_idx = []
for i in range(len(y_pred)):
if not np.array_equal(y_pred[i], y_pred_last[i]):
change_idx.append(i)
y_pred_last = np.copy(y_pred)
delta_label = len(change_idx)
print(f'Fraction of documents with label changes: {np.round(delta_label/y_pred.shape[0]*100, 3)} %')
if delta_label/y_pred.shape[0] < tol/100:
print(f'\nFraction: {np.round(delta_label / y_pred.shape[0] * 100, 3)} % < tol: {tol} %')
print('Reached tolerance threshold. Self-training terminated.')
break
else:
y_pred_last = np.copy(y_pred)
# train on batch
index_array = np.arange(x_nonblock.shape[0])
if index * batch_size >= x_nonblock.shape[0]:
index = 0
idx = index_array[index * batch_size: min((index + 1) * batch_size, x_nonblock.shape[0])]
try:
assert len(idx) > 0
except AssertionError:
print(f'Error @ index {index}')
model.train_on_batch(x=x_nonblock[idx], y=p_nonblock[idx])
index = index + 1 if (index + 1) * batch_size < x_nonblock.shape[0] else 0
ite += 1
except KeyboardInterrupt:
print("\nKeyboard interrupt! Self-training terminated.")
break
for logfile in logfiles:
logfile.close()
if save_dir is not None:
model.save_weights(save_dir + '/final.h5')
print(f"Final model saved to: {save_dir}/final.h5")
q_all = np.zeros((len(x), 0))
for i in range(level+1):
q_i = self.model[i].predict(x)
q_all = np.concatenate((q_all, q_i), axis=1)
y_pred_agg = self.aggregate_pred(q_all, level, block_idx, cur_idx)
self.record_block(block_idx, y_pred_agg)
return y_pred_agg