-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattention_model.py
282 lines (241 loc) · 14.7 KB
/
attention_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/python
#coding:utf-8
import os
import tensorflow as tf
import time
from tensorflow.contrib import rnn
from tensorflow.contrib import layers
from gsm_model import VariationalTopicModel
class Vanilla_attention_model(object):
def __init__(self, num_classes=20, pretrained_embed=None, embedding_size=100,
hidden_size=64, dropout_keep_proba=0.8, max_word_num=200, train_embed=True):
self.num_classes = int(num_classes)
self.embedding_size = int(embedding_size)
self.pretrained_embed = pretrained_embed # [vocab_size, embedding_size]
self.hidden_size = int(hidden_size)
self.dropout_keep_proba = dropout_keep_proba
self.max_word_num = int(max_word_num)
self.train_embed = train_embed
with tf.variable_scope('placeholder'):
self.input_x = tf.placeholder(dtype=tf.int32, shape=[None, self.max_word_num], name='input_x_rnn')
if self.num_classes > 0:
self.input_y = tf.placeholder(dtype=tf.float32, shape=[None, self.num_classes], name='input_y_label')
else:
self.input_y = tf.placeholder(dtype=tf.float32, shape=[None, ], name='input_y_label')
self.is_training = tf.placeholder(dtype=tf.bool, name='is_training')
with tf.variable_scope("word_embedding"):
word_embedding_valid = tf.Variable(initial_value=self.pretrained_embed, trainable=self.train_embed, dtype=tf.float32)
word_embedding_pad = tf.constant(value=0, dtype=tf.float32, shape=[1, self.embedding_size])
self.word_embedding_mat = tf.concat([word_embedding_pad, word_embedding_valid], axis = 0)
#shape: [batch_size, max_word_num, embedding_size]
self.embedded_input = tf.nn.embedding_lookup(self.word_embedding_mat, self.input_x)
with tf.variable_scope("doc2vec"):
# doc_encoded: [batch_size, max_word_num, hidden_size*2]
doc_encoded = self.BidirectionalGRUEncoder(self.embedded_input, self.hidden_size, name='bi-gru')
#print("bi-GRU out shape: ", doc_encoded.shape)
#doc_encoded = self.BidirectionalLSTMEncoder(self.embedded_input, self.hidden_size, name='bi-lstm')
# doc_vec: [batch_size, hidden_size*2]
doc_vec, self.weights = self.AttentionLayer(doc_encoded, self.hidden_size, name='attention')
print("attention out shape: ", doc_vec.shape)
doc_vec_dropped = layers.dropout(doc_vec, keep_prob=self.dropout_keep_proba, is_training=self.is_training)
if self.num_classes > 0:
out = layers.fully_connected(inputs=doc_vec_dropped, num_outputs=self.num_classes, activation_fn=None)
else:
out = layers.fully_connected(inputs=doc_vec_dropped, num_outputs=1, activation_fn=None)
print("logit shape: ", out.shape)
if self.num_classes > 0:
with tf.variable_scope('cross_entro_loss'):
# cross-entropy loss
self.cross_entro = tf.losses.softmax_cross_entropy(onehot_labels=self.input_y, logits=out, reduction=tf.losses.Reduction.MEAN)
else:
with tf.variable_scope('mse_loss'):
# mse loss
self.mse = tf.losses.mean_squared_error(labels=self.input_y, predictions=tf.squeeze(out), reduction=tf.losses.Reduction.MEAN)
self.predict_prob = tf.nn.softmax(out)
self.predict = tf.argmax(out, axis=1, name='predict')
if self.num_classes > 0:
with tf.variable_scope('accuracy'):
self.label = tf.argmax(self.input_y, axis=1, name='label')
self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.label), tf.float32))
# add new tensors for training and setup summary and savers
def train_settings(self, out_dir, lr, sess):
if self.num_classes > 0:
self.loss = self.cross_entro
else:
self.loss = self.mse
timestamp = str(int(time.time()))
#self.out_dir = os.path.abspath(os.path.join(os.path.curdir, out_dir, timestamp))
self.out_dir = os.path.abspath(os.path.join(os.path.curdir, out_dir))
print("Model Writing to {}\n".format(self.out_dir))
self.global_step = tf.Variable(0, trainable=False)
optimizer = tf.train.AdamOptimizer(lr)
tvars = tf.trainable_variables()
grads = tf.gradients(self.loss, tvars)
grads_and_vars = tuple(zip(grads, tvars))
self.train_op = optimizer.apply_gradients(grads_and_vars, global_step=self.global_step)
loss_summary = tf.summary.scalar('total_loss', self.loss)
if self.num_classes > 0:
acc_summary = tf.summary.scalar('accuracy', self.acc)
else:
mse_summary = tf.summary.scalar('mse', self.loss)
self.train_summary_op = tf.summary.merge_all()
train_summary_dir = os.path.join(self.out_dir, "summaries", "train")
self.train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
self.dev_summary_op = tf.summary.merge_all()
dev_summary_dir = os.path.join(self.out_dir, "summaries", "dev")
self.dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
self.checkpoint_dir = os.path.abspath(os.path.join(self.out_dir, "checkpoints"))
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
self.best_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
self.recent_saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
sess.run(tf.global_variables_initializer())
# return the length of each sequence
def length(self, sequence):
used = tf.sign(tf.reduce_max(tf.abs(sequence), 2))
length = tf.reduce_sum(used, 1)
length = tf.cast(length, tf.int32)
return length
def BidirectionalGRUEncoder(self, inputs, units, name):
#inputs shape: [batch_size, max_time, voc_size]
with tf.variable_scope(name):
GRU_cell_fw = rnn.GRUCell(units)
GRU_cell_bw = rnn.GRUCell(units)
# fw_outputs, bw_outputs size: [batch_size, max_time, hidden_size]
# time_major=False,
# if time_major = True, tensor shape: `[max_time, batch_size, depth]`.
# if time_major = False, tensor shape`[batch_size, max_time, depth]`.
((fw_outputs, bw_outputs), (_, _)) = tf.nn.bidirectional_dynamic_rnn(cell_fw=GRU_cell_fw,
cell_bw=GRU_cell_bw,
inputs=inputs,
sequence_length=self.length(inputs),
dtype=tf.float32)
#outputs size [batch_size, max_time, hidden_size*2]
outputs = tf.concat((fw_outputs, bw_outputs), 2)
return outputs
def BidirectionalLSTMEncoder(self, inputs, units, name):
with tf.variable_scope(name):
LSTM_cell_fw = rnn.LSTMCell(units)
LSTM_cell_bw = rnn.LSTMCell(units)
((fw_outputs, bw_outputs), (_, _)) = tf.nn.bidirectional_dynamic_rnn(cell_fw=LSTM_cell_fw,
cell_bw=LSTM_cell_bw,
inputs=inputs,
sequence_length=self.length(inputs),
dtype=tf.float32)
outputs = tf.concat((fw_outputs, bw_outputs), 2)
return outputs
def AttentionLayer(self, values, units, name):
# values: [batch_size, max_time, encoder_size=hidden_size*2]
with tf.variable_scope(name):
# u_context: [units,]
u_context = tf.Variable(tf.truncated_normal([units]), name='u_context')
# h1: [batch_size, max_time, units]
self.h1 = layers.fully_connected(values, units, activation_fn=tf.nn.tanh)
# shape [batch_size, max_time, 1]
alpha = tf.nn.softmax(tf.reduce_sum(tf.multiply(self.h1, u_context), axis=-1, keep_dims=True), dim=1)
# atten_out shape: (batch_size, encoder_size)
atten_out = tf.reduce_sum(tf.multiply(values, alpha), axis=1)
return atten_out, alpha
class Topical_attention_model(Vanilla_attention_model):
# override
def __init__(self, reduced_vocab_size=2000, num_topic=50, num_classes=20, pretrained_embed=None,
embedding_size=100, RNN_hidden_size=64, topic_hidden_size=64, dropout_keep_proba=0.8,
max_word_num=500, threshold=0, train_embed=True):
with tf.variable_scope('variational_topic_model'):
self.vtm = VariationalTopicModel(reduced_vocab_size, topic_hidden_size,
num_topic, embedding_size, dropout_keep_proba)
with tf.variable_scope('clf_model'):
if threshold > 0:
self.threshold = tf.constant(threshold, dtype=tf.float32)
else:
self.threshold = None
Vanilla_attention_model.__init__(self, num_classes, pretrained_embed, embedding_size,
RNN_hidden_size, dropout_keep_proba, max_word_num, train_embed)
# override
def AttentionLayer(self, values, units, name):
# values: [batch_size, max_time, encoder_size=hidden_size*2]
# self.topic: [batch_size, num_topic]
# self.topic_embed: [num_topic, embedding_size]
if self.threshold != None:
w = self.vtm.topic-self.threshold
else:
w = self.vtm.topic
with tf.variable_scope(name):
topic_embed_unstack = tf.unstack(self.vtm.topic_embed) # a list of topic vectors
topic_atten_weights = []
# h1: [batch_size, max_time, units]
self.h1 = layers.fully_connected(values, self.vtm.embedding_size, activation_fn=tf.nn.tanh)
for i in range(self.vtm.num_topic):
query = topic_embed_unstack[i]
# multiplitive attention
# shape [batch_size, max_time, 1]
score = tf.reduce_sum(tf.multiply(self.h1, query), axis=-1, keep_dims=True)
# attention_weights shape == (batch_size, max_length, 1)
attention_weights = tf.nn.softmax(score, axis=1)
topic_atten_weights.append(attention_weights)
# topic_atten shape: (batch_size, max_length, 1)
topic_atten = tf.matmul(tf.concat(topic_atten_weights, -1), tf.expand_dims(w, -1))
# atten_out shape after sum == (batch_size, encoder_size)
atten_out = tf.reduce_sum(tf.multiply(topic_atten, values), axis=1)
return atten_out, topic_atten_weights
# overrider
def train_settings(self, out_dir, lr, sess, pretrain_epoch=0, ckpt_name=None):
timestamp = str(int(time.time()))
self.out_dir = os.path.abspath(os.path.join(os.path.curdir, out_dir))
print("Model Writing to {}\n".format(self.out_dir))
self.global_step = tf.Variable(0, trainable=False)
optimizer = tf.train.AdamOptimizer(lr)
var_loss = tf.reduce_mean(self.vtm.var_loss)
self.inference_loss = tf.reduce_mean(self.vtm.kl_divergence)
self.generative_loss = tf.reduce_mean(self.vtm.likelihood)
if self.num_classes > 0:
total_loss = self.cross_entro + var_loss
self.clf_loss = self.cross_entro
else:
total_loss = self.mse + var_loss
self.clf_loss = self.mse
tvars = tf.trainable_variables()
grads = tf.gradients(total_loss, tvars)
grads_and_vars = tuple(zip(grads, tvars))
self.train_op = optimizer.apply_gradients(grads_and_vars, global_step=self.global_step)
clf_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,'clf_model')
self.train_clf_op = optimizer.minimize(self.clf_loss, global_step=self.global_step, var_list=clf_tvars)
vtm_tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,'variational_topic_model')
self.train_vtm_op = optimizer.minimize(var_loss, global_step=self.global_step, var_list=vtm_tvars)
clf_loss_sum = tf.summary.scalar('clf_loss', self.clf_loss)
if self.num_classes > 0:
acc_summary = tf.summary.scalar('accuracy', self.acc)
else:
mse_summary = tf.summary.scalar('mse', self.clf_loss)
inference_loss_sum = tf.summary.scalar("KL_div", self.inference_loss)
generative_loss_sum = tf.summary.scalar("likelihood", self.generative_loss)
loss_sum = tf.summary.scalar("total_loss", total_loss)
perp_sum = tf.summary.scalar("perplexity_per_batch", self.vtm.perp)
if self.threshold != None:
threshold_sum = tf.summary.scalar("threshold", self.threshold)
train_summary_dir = os.path.join(self.out_dir, "summaries", "train")
dev_summary_dir = os.path.join(self.out_dir, "summaries", "dev")
self.train_summary_op = tf.summary.merge_all()
self.train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
self.dev_perp = tf.placeholder(tf.float32, [])
dev_perp_sum = tf.summary.scalar("dev_perp_per_epoch", self.dev_perp)
if self.num_classes > 0:
self.dev_acc = tf.placeholder(tf.float32, [])
dev_acc_sum = tf.summary.scalar("dev_acc_per_epoch", self.dev_acc)
self.dev_summary_op = tf.summary.merge([dev_perp_sum, dev_acc_sum])
else:
self.dev_mse = tf.placeholder(tf.float32, [])
dev_mse_sum = tf.summary.scalar("dev_mse_per_epoch", self.dev_mse)
self.dev_summary_op = tf.summary.merge([dev_perp_sum, dev_acc_sum])
self.dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)
self.checkpoint_dir = os.path.abspath(os.path.join(self.out_dir, "checkpoints"))
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
self.best_acc_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
self.best_perp_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
self.recent_saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
self.current_saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
if pretrain_epoch>0:
self.current_saver.restore(sess, os.path.join(self.checkpoint_dir, ckpt_name))
else:
sess.run(tf.global_variables_initializer())