forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinding_the_lines.py
155 lines (138 loc) · 6.64 KB
/
finding_the_lines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
import cv2
import matplotlib.pyplot as plt
"""
find lane pixels and fit to find the lane boundary.
"""
def find_peak(binary_warped):
histogram = np.sum(binary_warped[int(binary_warped.shape[0]/2):,:,0], axis=0)
# Create an output image to draw on and visualize the result
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
#print (leftx_base, midpoint,rightx_base)
return leftx_base, midpoint, rightx_base
def sliding_windows(binary_warped, nwindows = 9):
"""
params:
- nwindows: Choose the number of sliding windows
"""
leftx_base,midpoint, rightx_base = find_peak(binary_warped)
out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255
# Set height of windows
window_height = np.int(binary_warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
rectangle_data = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
rectangle_data.append((win_y_low, win_y_high, win_xleft_low, win_xleft_high, win_xright_low, win_xright_high))
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
left_fit, right_fit = (None, None)
# Fit a second order polynomial to each
if len(leftx) != 0:
left_fit = np.polyfit(lefty, leftx, 2)
if len(rightx) != 0:
right_fit = np.polyfit(righty, rightx, 2)
return left_fit, right_fit, left_lane_inds, right_lane_inds, rectangle_data
def visualize_windows(binary_warped):
left_fit, right_fit, left_lane_inds, right_lane_inds, rectangles = \
sliding_windows(binary_warped)
h = binary_warped.shape[0]
left_fit_x_int = left_fit[0]*h**2 + left_fit[1]*h + left_fit[2]
right_fit_x_int = right_fit[0]*h**2 + right_fit[1]*h + right_fit[2]
#print('fit x-intercepts:', left_fit_x_int, right_fit_x_int)
# Create an output image to draw on and visualize the result
out_img = np.uint8(np.dstack((binary_warped, binary_warped, binary_warped))*255)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
for rect in rectangles:
# Draw the windows on the visualization image
cv2.rectangle(out_img,(rect[2],rect[0]),(rect[3],rect[1]),(0,255,0), 2)
cv2.rectangle(out_img,(rect[4],rect[0]),(rect[5],rect[1]),(0,255,0), 2)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [100, 200, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
def visualize_windows2(binary_warped):
# Draw the windows on the visualization image
#cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),
# (0,255,0), 2)
#cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),
# (0,255,0), 2)
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0] )
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
plt.imshow(out_img)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
if __name__ == "__main__":
from calibration import calibrate, undistort
from wraped import wraped
from thresh import thresh
import numpy as np
import matplotlib.image as mpimg
img = mpimg.imread("test_images/test1.jpg")
gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
ret, mtx, dist, rvecs, tvecs = calibrate(gray, 6, 9)
undistort_img = undistort(img, mtx, dist)
threshed_img = thresh(img)
binary_warped = wraped(threshed_img)
visualize_windows(binary_warped)
#leftx_base,midpoint, rightx_base = find_peak(binary_warped)
#left_fit, right_fit = sliding_windows(binary_warped)
#print (left_fit, right_fit)