-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathtrain.py
158 lines (116 loc) · 5.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import sys
import os
import logging
import torch
import time
import argparse
import numpy as np
import torch.optim as optim
from tensorboardX import SummaryWriter
import lib.config as config
from lib.utils import load_config
from lib.data import make_data_loader
from lib.checkpoints import CheckpointIO
from lib.logger import prepare_logger
# Set the random seeds for reproducibility
np.random.seed(41)
torch.manual_seed(41)
if torch.cuda.is_available():
torch.cuda.manual_seed(41)
def main(cfg, logger):
"""
Main function of this software. After preparing the data loaders, model, optimizer, and trainer,
start with the training and evaluation process.
Args:
cfg (dict): current configuration paramaters
"""
# Initialize parameters
model_selection_metric = cfg['train']['model_selection_metric']
if cfg['train']['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif cfg['train']['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be either maximize or minimize.')
# Get data loader
train_loader = make_data_loader(cfg, phase='train')
val_loader = make_data_loader(cfg, phase='val')
# Set up tensorboard logger
tboard_logger = SummaryWriter(os.path.join(cfg['misc']['log_dir'], 'logs'))
# Get model
model = config.get_model(cfg)
# Get optimizer and trainer
optimizer = getattr(optim, cfg['optimizer']['alg'])(model.parameters(), lr=cfg['optimizer']['learning_rate'],
weight_decay=cfg['optimizer']['weight_decay'])
trainer = config.get_trainer(cfg, model, optimizer, tboard_logger)
# Load pre-trained model if existing
kwargs = {
'model': model,
'optimizer': optimizer,
}
checkpoint_io = CheckpointIO(cfg['misc']['log_dir'], initialize_from=cfg['model']['init_from'],
initialization_file_name=cfg['model']['init_file_name'], **kwargs)
try:
load_dict = checkpoint_io.load('model.pt')
except FileExistsError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', -1)
it = load_dict.get('it', -1)
metric_val_best = load_dict.get('loss_val_best', -model_selection_sign * np.inf)
if metric_val_best == np.inf or metric_val_best == -np.inf:
metric_val_best = -model_selection_sign * np.inf
logger.info('Current best validation metric ({}): {:.5f}'.format(model_selection_metric, metric_val_best))
# Training parameters
stat_interval = cfg['train']['stat_interval']
stat_interval = stat_interval if stat_interval > 0 else abs(stat_interval* len(train_loader))
chkpt_interval = cfg['train']['chkpt_interval']
chkpt_interval = chkpt_interval if chkpt_interval > 0 else abs(chkpt_interval* len(train_loader))
val_interval = cfg['train']['val_interval']
val_interval = val_interval if val_interval > 0 else abs(val_interval* len(train_loader))
# Print model parameters and model graph
nparameters = sum(p.numel() for p in model.parameters())
#print(model)
logger.info('Total number of parameters: {}'.format(nparameters))
# Training loop
while epoch_it < cfg['train']['max_epoch']:
epoch_it += 1
for batch in train_loader:
it += 1
loss = trainer.train_step(batch, it)
tboard_logger.add_scalar('train/loss', loss, it)
# Print output
if stat_interval != 0 and (it % stat_interval) == 0 and it != 0:
logger.info('[Epoch {}] it={}, loss={:.4f}'.format(epoch_it, it, loss))
# Save checkpoint
if (chkpt_interval != 0 and (it % chkpt_interval) == 0) and it != 0:
logger.info('Saving checkpoint')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Run validation
if val_interval != 0 and (it % val_interval) == 0 and it != 0:
eval_dict = trainer.evaluate(val_loader,it)
metric_val = eval_dict[model_selection_metric]
logger.info('Validation metric ({}): {:.4f}'.format(model_selection_metric, metric_val))
for k, v in eval_dict.items():
tboard_logger.add_scalar('val/{}'.format(k), v, it)
if model_selection_sign * (metric_val - metric_val_best) > 0:
metric_val_best = metric_val
logger.info('New best model (loss {:.4f})'.format(metric_val_best))
checkpoint_io.save('model_best.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Quit after the maximum number of epochs is reached
logger.info('Training completed after {} Epochs ({} it) with best val metric ({})={}'.format(epoch_it, it, model_selection_metric, metric_val_best))
if __name__ == "__main__":
logger = logging.getLogger
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help= 'Path to the config file.')
args = parser.parse_args()
cfg = load_config(args.config)
# Create the output dir if it does not exist
if not os.path.exists(cfg['misc']['log_dir']):
os.makedirs(cfg['misc']['log_dir'])
logger, checkpoint_dir = prepare_logger(cfg,cfg['misc']['log_path'])
cfg['misc']['log_dir'] = checkpoint_dir
# Argument: path to the config file
logger.info('Torch version: {}'.format(torch.__version__))
main(cfg, logger)