-
Notifications
You must be signed in to change notification settings - Fork 11
/
safdnet_20e_nuscenes.yaml
193 lines (160 loc) · 5.5 KB
/
safdnet_20e_nuscenes.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
CLASS_NAMES: ['car','truck', 'construction_vehicle', 'bus', 'trailer',
'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/nuscenes_dataset.yaml
POINT_CLOUD_RANGE: [-54.0, -54.0, -5.0, 54.0, 54.0, 3.0]
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
DB_INFO_PATH:
- nuscenes_dbinfos_10sweeps_withvelo.pkl
USE_SHARED_MEMORY: True
DB_DATA_PATH:
- nuscenes_10sweeps_withvelo_lidar.npy
PREPARE: {
filter_by_min_points: [
'car:5','truck:5', 'construction_vehicle:5', 'bus:5', 'trailer:5',
'barrier:5', 'motorcycle:5', 'bicycle:5', 'pedestrian:5', 'traffic_cone:5'
],
}
SAMPLE_GROUPS: [
'car:2','truck:3', 'construction_vehicle:7', 'bus:4', 'trailer:6',
'barrier:2', 'motorcycle:6', 'bicycle:6', 'pedestrian:2', 'traffic_cone:2'
]
NUM_POINT_FEATURES: 5
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: True
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.9, 1.1]
- NAME: random_world_translation
NOISE_TRANSLATE_STD: [0.5, 0.5, 0.5]
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels_placeholder
VOXEL_SIZE: [0.3, 0.3, 8.0]
MODEL:
NAME: TransFusion
VFE:
NAME: DynPillarVFE
WITH_DISTANCE: False
USE_ABSLOTE_XYZ: True
USE_NORM: True
NUM_FILTERS: [128, 128]
BACKBONE_3D:
NAME: SparseHEDNet2D
SED_FEATURE_DIM: 128
SED_NUM_LAYERS: 6
SED_NUM_SBB: [2, 1, 1]
SED_DOWN_STRIDE: [1, 2, 2]
SED_DOWN_KERNEL_SIZE: [3, 3, 3]
AFD_FEATURE_DIM: 128
AFD_NUM_LAYERS: 1
AFD_NUM_SBB: [4, 4, 4]
AFD_DOWN_STRIDE: [1, 2, 2]
AFD_DOWN_KERNEL_SIZE: [3, 3, 3]
AFD: True
FEATMAP_STRIDE: 2
DETACH_FEATURE: True
FG_THRESHOLD: 0.3
GREOUP_POOLING_KERNEL_SIZE: [9, 15, 7, 7] # NDS 70.7~71.1
GROUP_CLASS_NAMES: [
['car', 'truck', 'construction_vehicle'],
['bus', 'trailer'],
['barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'],
]
DENSE_HEAD:
NAME: SparseTransFusionHead
CLASS_AGNOSTIC: False
USE_BIAS_BEFORE_NORM: False
USE_TENSOR_MASK: True
INPUT_FEATURES: 128
NUM_PROPOSALS: 200 # set it to 300 when performing inference on the test set (inference only)
HIDDEN_CHANNEL: 128
NUM_CLASSES: 10
NUM_HEADS: 8
NMS_KERNEL_SIZE: 3
FFN_CHANNEL: 256
DROPOUT: 0.1
BN_MOMENTUM: 0.1
ACTIVATION: relu
NUM_HM_CONV: 2
SEPARATE_HEAD_CFG:
HEAD_ORDER: ['center', 'height', 'dim', 'rot', 'vel']
HEAD_DICT: {
'center': {'out_channels': 2, 'num_conv': 2},
'height': {'out_channels': 1, 'num_conv': 2},
'dim': {'out_channels': 3, 'num_conv': 2},
'rot': {'out_channels': 2, 'num_conv': 2},
'vel': {'out_channels': 2, 'num_conv': 2},
}
TARGET_ASSIGNER_CONFIG:
DATASET: nuScenes
FEATURE_MAP_STRIDE: 2
GAUSSIAN_OVERLAP: 0.1
MIN_RADIUS: 2
HUNGARIAN_ASSIGNER:
cls_cost: {'gamma': 2.0, 'alpha': 0.25, 'weight': 0.15}
reg_cost: {'weight': 0.25}
iou_cost: {'weight': 0.25}
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'bbox_weight': 0.25,
'hm_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2]
}
LOSS_CLS:
use_sigmoid: True
gamma: 2.0
alpha: 0.25
LOSS_IOU: False
LOSS_IOU_REG: False
POST_PROCESSING:
SCORE_THRESH: 0.0
POST_CENTER_RANGE: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0]
USE_IOU_TO_RECTIFY_SCORE: False
IOU_RECTIFIER: [0.5]
NMS_CONFIG:
NMS_TYPE: nms_gpu
NMS_THRESH: 0.2
NMS_PRE_MAXSIZE: 1000
NMS_POST_MAXSIZE: 100
SCORE_THRES: 0.
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.1
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 2
NUM_EPOCHS: 20
OPTIMIZER: adam_onecycle
LR: 0.003
WEIGHT_DECAY: 0.05
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 35
LOSS_SCALE_FP16: 4.0
HOOK:
DisableAugmentationHook:
DISABLE_AUG_LIST: ['gt_sampling']
NUM_LAST_EPOCHS: 4 # yield similar results if set it to 5 following mmdetection3d