-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfcos3d_simipu_nus_abl_onefive.txt
1255 lines (1250 loc) · 224 KB
/
fcos3d_simipu_nus_abl_onefive.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2021-08-17 15:58:33,746 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM2-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
PyTorch: 1.6.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
TorchVision: 0.7.0
OpenCV: 4.5.2
MMCV: 1.3.4
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMSegmentation: 0.13.0
MMDetection3D: 0.13.0+b15fc06
------------------------------------------------------------
2021-08-17 15:58:34,635 - mmdet - INFO - Distributed training: True
2021-08-17 15:58:35,393 - mmdet - INFO - Config:
dataset_type = 'NuScenesMonoDataset'
data_root = '/nfs/share_data/nuscenes/'
class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
input_modality = dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False)
img_norm_cfg = dict(
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]),
dict(
type='Collect3D',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'attr_labels', 'gt_bboxes_3d',
'gt_labels_3d', 'centers2d', 'depths'
])
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
'barrier'
],
with_label=False),
dict(type='Collect3D', keys=['img'])
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=8,
train=dict(
type='NuScenesMonoDataset',
data_root='/nfs/share_data/nuscenes/',
ann_file=
'/nfs/share_data/nuscenes/nuscenes_infos_train_mono3d.coco.json',
img_prefix='/nfs/share_data/nuscenes/',
classes=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
],
pipeline=[
dict(type='LoadImageFromFileMono3D'),
dict(
type='LoadAnnotations3D',
with_bbox=True,
with_label=True,
with_attr_label=True,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(type='Resize', img_scale=(1600, 900), keep_ratio=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
'barrier'
]),
dict(
type='Collect3D',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'attr_labels',
'gt_bboxes_3d', 'gt_labels_3d', 'centers2d', 'depths'
])
],
modality=dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False),
test_mode=False,
box_type_3d='Camera'),
val=dict(
type='NuScenesMonoDataset',
data_root='/nfs/share_data/nuscenes/',
ann_file='/nfs/share_data/nuscenes/nuscenes_infos_val_mono3d.coco.json',
img_prefix='/nfs/share_data/nuscenes/',
classes=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
],
pipeline=[
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus',
'construction_vehicle', 'bicycle', 'motorcycle',
'pedestrian', 'traffic_cone', 'barrier'
],
with_label=False),
dict(type='Collect3D', keys=['img'])
])
],
modality=dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False),
test_mode=True,
box_type_3d='Camera'),
test=dict(
type='NuScenesMonoDataset',
data_root='/nfs/share_data/nuscenes/',
ann_file='/nfs/share_data/nuscenes/nuscenes_infos_val_mono3d.coco.json',
img_prefix='/nfs/share_data/nuscenes/',
classes=[
'car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
],
pipeline=[
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAug',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=[
'car', 'truck', 'trailer', 'bus',
'construction_vehicle', 'bicycle', 'motorcycle',
'pedestrian', 'traffic_cone', 'barrier'
],
with_label=False),
dict(type='Collect3D', keys=['img'])
])
],
modality=dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False),
test_mode=True,
box_type_3d='Camera'))
evaluation = dict(start=10, interval=2)
model = dict(
type='FCOSMono3D',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='SyncBN', requires_grad=True),
norm_eval=False,
style='pytorch',
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False,
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='FCOSMono3DHead',
num_classes=10,
in_channels=256,
stacked_convs=2,
feat_channels=256,
use_direction_classifier=True,
diff_rad_by_sin=True,
pred_attrs=True,
pred_velo=True,
dir_offset=0.7854,
strides=[8, 16, 32, 64, 128],
group_reg_dims=(2, 1, 3, 1, 2),
cls_branch=(256, ),
reg_branch=((256, ), (256, ), (256, ), (256, ), ()),
dir_branch=(256, ),
attr_branch=(256, ),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_attr=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
norm_on_bbox=True,
centerness_on_reg=True,
center_sampling=True,
conv_bias=True,
dcn_on_last_conv=True),
train_cfg=dict(
allowed_border=0,
code_weight=[1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05],
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_pre=1000,
nms_thr=0.8,
score_thr=0.05,
min_bbox_size=0,
max_per_img=200))
optimizer = dict(
type='SGD',
lr=0.008,
momentum=0.9,
weight_decay=0.0001,
paramwise_cfg=dict(bias_lr_mult=2.0, bias_decay_mult=0.0))
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.3333333333333333,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=1)
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = 'nfs/lzy/fcos3d_ablation/onefive'
load_from = 'checkpoints/mono3d_waymo_onefive.pth'
resume_from = None
workflow = [('train', 1)]
total_epochs = 12
gpu_ids = range(0, 8)
2021-08-17 15:58:35,393 - mmdet - INFO - Set random seed to 0, deterministic: False
2021-08-17 15:58:35,931 - mmdet - INFO - Model:
FCOSMono3D(
(backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(neck): FPN(
(lateral_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
)
)
(fpn_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(4): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
)
)
(bbox_head): FCOSMono3DHead(
(loss_cls): FocalLoss()
(loss_bbox): SmoothL1Loss()
(loss_dir): CrossEntropyLoss()
(loss_attr): CrossEntropyLoss()
(cls_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(1): ConvModule(
(conv): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(reg_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
(1): ConvModule(
(conv): ModulatedDeformConv2dPack(
(conv_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_cls_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_cls): Conv2d(256, 10, kernel_size=(1, 1), stride=(1, 1))
(conv_reg_prevs): ModuleList(
(0): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(1): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(2): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(3): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(4): None
)
(conv_regs): ModuleList(
(0): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(256, 1, kernel_size=(1, 1), stride=(1, 1))
(4): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
)
(conv_dir_cls_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_dir_cls): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
(conv_attr_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 256, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_attr): Conv2d(256, 9, kernel_size=(1, 1), stride=(1, 1))
(conv_centerness_prev): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(gn): GroupNorm(32, 64, eps=1e-05, affine=True)
(activate): ReLU(inplace=True)
)
)
(conv_centerness): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))
(scales): ModuleList(
(0): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(1): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(2): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(3): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
(4): ModuleList(
(0): Scale()
(1): Scale()
(2): Scale()
)
)
(loss_centerness): CrossEntropyLoss()
)
)
2021-08-17 15:59:20,720 - mmdet - INFO - load checkpoint from checkpoints/mono3d_waymo_onefive.pth
2021-08-17 15:59:20,731 - mmdet - INFO - Use load_from_local loader
2021-08-17 15:59:20,868 - mmdet - WARNING - The model and loaded state dict do not match exactly
missing keys in source state_dict: backbone.layer3.0.conv2.conv_offset.weight, backbone.layer3.0.conv2.conv_offset.bias, backbone.layer3.1.conv2.conv_offset.weight, backbone.layer3.1.conv2.conv_offset.bias, backbone.layer3.2.conv2.conv_offset.weight, backbone.layer3.2.conv2.conv_offset.bias, backbone.layer3.3.conv2.conv_offset.weight, backbone.layer3.3.conv2.conv_offset.bias, backbone.layer3.4.conv2.conv_offset.weight, backbone.layer3.4.conv2.conv_offset.bias, backbone.layer3.5.conv2.conv_offset.weight, backbone.layer3.5.conv2.conv_offset.bias, backbone.layer4.0.conv2.conv_offset.weight, backbone.layer4.0.conv2.conv_offset.bias, backbone.layer4.1.conv2.conv_offset.weight, backbone.layer4.1.conv2.conv_offset.bias, backbone.layer4.2.conv2.conv_offset.weight, backbone.layer4.2.conv2.conv_offset.bias, neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, neck.fpn_convs.4.conv.weight, neck.fpn_convs.4.conv.bias, bbox_head.cls_convs.0.conv.weight, bbox_head.cls_convs.0.conv.bias, bbox_head.cls_convs.0.gn.weight, bbox_head.cls_convs.0.gn.bias, bbox_head.cls_convs.1.conv.weight, bbox_head.cls_convs.1.conv.bias, bbox_head.cls_convs.1.conv.conv_offset.weight, bbox_head.cls_convs.1.conv.conv_offset.bias, bbox_head.cls_convs.1.gn.weight, bbox_head.cls_convs.1.gn.bias, bbox_head.reg_convs.0.conv.weight, bbox_head.reg_convs.0.conv.bias, bbox_head.reg_convs.0.gn.weight, bbox_head.reg_convs.0.gn.bias, bbox_head.reg_convs.1.conv.weight, bbox_head.reg_convs.1.conv.bias, bbox_head.reg_convs.1.conv.conv_offset.weight, bbox_head.reg_convs.1.conv.conv_offset.bias, bbox_head.reg_convs.1.gn.weight, bbox_head.reg_convs.1.gn.bias, bbox_head.conv_cls_prev.0.conv.weight, bbox_head.conv_cls_prev.0.conv.bias, bbox_head.conv_cls_prev.0.gn.weight, bbox_head.conv_cls_prev.0.gn.bias, bbox_head.conv_cls.weight, bbox_head.conv_cls.bias, bbox_head.conv_reg_prevs.0.0.conv.weight, bbox_head.conv_reg_prevs.0.0.conv.bias, bbox_head.conv_reg_prevs.0.0.gn.weight, bbox_head.conv_reg_prevs.0.0.gn.bias, bbox_head.conv_reg_prevs.1.0.conv.weight, bbox_head.conv_reg_prevs.1.0.conv.bias, bbox_head.conv_reg_prevs.1.0.gn.weight, bbox_head.conv_reg_prevs.1.0.gn.bias, bbox_head.conv_reg_prevs.2.0.conv.weight, bbox_head.conv_reg_prevs.2.0.conv.bias, bbox_head.conv_reg_prevs.2.0.gn.weight, bbox_head.conv_reg_prevs.2.0.gn.bias, bbox_head.conv_reg_prevs.3.0.conv.weight, bbox_head.conv_reg_prevs.3.0.conv.bias, bbox_head.conv_reg_prevs.3.0.gn.weight, bbox_head.conv_reg_prevs.3.0.gn.bias, bbox_head.conv_regs.0.weight, bbox_head.conv_regs.0.bias, bbox_head.conv_regs.1.weight, bbox_head.conv_regs.1.bias, bbox_head.conv_regs.2.weight, bbox_head.conv_regs.2.bias, bbox_head.conv_regs.3.weight, bbox_head.conv_regs.3.bias, bbox_head.conv_regs.4.weight, bbox_head.conv_regs.4.bias, bbox_head.conv_dir_cls_prev.0.conv.weight, bbox_head.conv_dir_cls_prev.0.conv.bias, bbox_head.conv_dir_cls_prev.0.gn.weight, bbox_head.conv_dir_cls_prev.0.gn.bias, bbox_head.conv_dir_cls.weight, bbox_head.conv_dir_cls.bias, bbox_head.conv_attr_prev.0.conv.weight, bbox_head.conv_attr_prev.0.conv.bias, bbox_head.conv_attr_prev.0.gn.weight, bbox_head.conv_attr_prev.0.gn.bias, bbox_head.conv_attr.weight, bbox_head.conv_attr.bias, bbox_head.conv_centerness_prev.0.conv.weight, bbox_head.conv_centerness_prev.0.conv.bias, bbox_head.conv_centerness_prev.0.gn.weight, bbox_head.conv_centerness_prev.0.gn.bias, bbox_head.conv_centerness.weight, bbox_head.conv_centerness.bias, bbox_head.scales.0.0.scale, bbox_head.scales.0.1.scale, bbox_head.scales.0.2.scale, bbox_head.scales.1.0.scale, bbox_head.scales.1.1.scale, bbox_head.scales.1.2.scale, bbox_head.scales.2.0.scale, bbox_head.scales.2.1.scale, bbox_head.scales.2.2.scale, bbox_head.scales.3.0.scale, bbox_head.scales.3.1.scale, bbox_head.scales.3.2.scale, bbox_head.scales.4.0.scale, bbox_head.scales.4.1.scale, bbox_head.scales.4.2.scale
2021-08-17 15:59:20,869 - mmdet - INFO - Start running, host: root@onefive-dcn-master-0, work_dir: /nfs/lizhenyu1/workspace/python_workspace/mmdetection3d/nfs/lzy/fcos3d_ablation/onefive
2021-08-17 15:59:20,869 - mmdet - INFO - workflow: [('train', 1)], max: 12 epochs
2021-08-17 16:01:21,401 - mmdet - INFO - Epoch [1][50/2217] lr: 3.189e-03, eta: 17:46:10, time: 2.409, data_time: 0.252, memory: 20144, loss_cls: 0.7993, loss_offset: 1.3497, loss_depth: 4.0204, loss_size: 2.9166, loss_rotsin: 0.5598, loss_centerness: 0.6183, loss_velo: 0.0630, loss_dir: 0.6951, loss_attr: 1.6371, loss: 12.6594, grad_norm: 42.4119
2021-08-17 16:04:00,869 - mmdet - INFO - Epoch [1][100/2217] lr: 3.723e-03, eta: 20:36:30, time: 3.189, data_time: 1.170, memory: 20170, loss_cls: 0.5505, loss_offset: 1.2039, loss_depth: 2.1548, loss_size: 2.2172, loss_rotsin: 0.5364, loss_centerness: 0.6002, loss_velo: 0.0601, loss_dir: 0.6924, loss_attr: 1.2624, loss: 9.2777, grad_norm: 18.8624
2021-08-17 16:05:45,323 - mmdet - INFO - Epoch [1][150/2217] lr: 4.256e-03, eta: 18:49:47, time: 2.089, data_time: 0.058, memory: 20170, loss_cls: 0.5106, loss_offset: 1.1553, loss_depth: 1.9786, loss_size: 1.9700, loss_rotsin: 0.5276, loss_centerness: 0.5994, loss_velo: 0.0604, loss_dir: 0.6923, loss_attr: 1.1034, loss: 8.5976, grad_norm: 18.5226
2021-08-17 16:07:29,619 - mmdet - INFO - Epoch [1][200/2217] lr: 4.789e-03, eta: 17:55:14, time: 2.086, data_time: 0.059, memory: 20170, loss_cls: 0.4734, loss_offset: 1.0809, loss_depth: 1.8728, loss_size: 1.7970, loss_rotsin: 0.5253, loss_centerness: 0.5983, loss_velo: 0.0615, loss_dir: 0.6909, loss_attr: 1.0245, loss: 8.1246, grad_norm: 18.1866
2021-08-17 16:09:13,794 - mmdet - INFO - Epoch [1][250/2217] lr: 5.323e-03, eta: 17:21:35, time: 2.083, data_time: 0.059, memory: 20170, loss_cls: 0.4598, loss_offset: 1.0564, loss_depth: 2.1273, loss_size: 1.7325, loss_rotsin: 0.5239, loss_centerness: 0.5971, loss_velo: 0.0598, loss_dir: 0.6935, loss_attr: 0.9765, loss: 8.2269, grad_norm: 20.2812
2021-08-17 16:10:58,360 - mmdet - INFO - Epoch [1][300/2217] lr: 5.856e-03, eta: 16:59:09, time: 2.091, data_time: 0.060, memory: 20170, loss_cls: 0.4429, loss_offset: 1.0333, loss_depth: 2.5085, loss_size: 1.6466, loss_rotsin: 0.5208, loss_centerness: 0.5959, loss_velo: 0.0614, loss_dir: 0.6910, loss_attr: 0.9547, loss: 8.4552, grad_norm: 20.8473
2021-08-17 16:12:42,472 - mmdet - INFO - Epoch [1][350/2217] lr: 6.389e-03, eta: 16:42:03, time: 2.082, data_time: 0.059, memory: 20170, loss_cls: 0.4372, loss_offset: 1.0234, loss_depth: 2.1485, loss_size: 1.5760, loss_rotsin: 0.5193, loss_centerness: 0.5945, loss_velo: 0.0638, loss_dir: 0.6895, loss_attr: 0.9405, loss: 7.9928, grad_norm: 15.3677
2021-08-17 16:14:26,892 - mmdet - INFO - Epoch [1][400/2217] lr: 6.923e-03, eta: 16:29:08, time: 2.088, data_time: 0.058, memory: 20170, loss_cls: 0.4273, loss_offset: 1.0047, loss_depth: 1.9649, loss_size: 1.5133, loss_rotsin: 0.5172, loss_centerness: 0.5936, loss_velo: 0.0614, loss_dir: 0.6926, loss_attr: 0.8787, loss: 7.6538, grad_norm: 17.4869
2021-08-17 16:16:10,334 - mmdet - INFO - Epoch [1][450/2217] lr: 7.456e-03, eta: 16:17:45, time: 2.069, data_time: 0.061, memory: 20170, loss_cls: 0.4234, loss_offset: 0.9819, loss_depth: 1.6697, loss_size: 1.4951, loss_rotsin: 0.5170, loss_centerness: 0.5925, loss_velo: 0.0614, loss_dir: 0.6878, loss_attr: 0.8692, loss: 7.2979, grad_norm: 12.4495
2021-08-17 16:17:53,845 - mmdet - INFO - Epoch [1][500/2217] lr: 7.989e-03, eta: 16:08:22, time: 2.070, data_time: 0.061, memory: 20170, loss_cls: 0.4196, loss_offset: 0.9787, loss_depth: 1.8225, loss_size: 1.4762, loss_rotsin: 0.5134, loss_centerness: 0.5921, loss_velo: 0.0602, loss_dir: 0.6890, loss_attr: 0.8748, loss: 7.4265, grad_norm: 13.0913
2021-08-17 16:19:37,496 - mmdet - INFO - Epoch [1][550/2217] lr: 8.000e-03, eta: 16:00:28, time: 2.073, data_time: 0.059, memory: 20170, loss_cls: 0.4091, loss_offset: 0.9512, loss_depth: 1.4257, loss_size: 1.4388, loss_rotsin: 0.5139, loss_centerness: 0.5913, loss_velo: 0.0605, loss_dir: 0.6836, loss_attr: 0.8393, loss: 6.9134, grad_norm: 11.3532
2021-08-17 16:21:21,201 - mmdet - INFO - Epoch [1][600/2217] lr: 8.000e-03, eta: 15:53:39, time: 2.074, data_time: 0.060, memory: 20170, loss_cls: 0.4070, loss_offset: 0.9441, loss_depth: 1.4903, loss_size: 1.3748, loss_rotsin: 0.4995, loss_centerness: 0.5912, loss_velo: 0.0626, loss_dir: 0.6828, loss_attr: 0.8369, loss: 6.8891, grad_norm: 10.6201
2021-08-17 16:23:04,699 - mmdet - INFO - Epoch [1][650/2217] lr: 8.000e-03, eta: 15:47:29, time: 2.070, data_time: 0.060, memory: 20170, loss_cls: 0.4043, loss_offset: 0.9241, loss_depth: 1.3878, loss_size: 1.3958, loss_rotsin: 0.5037, loss_centerness: 0.5903, loss_velo: 0.0619, loss_dir: 0.6806, loss_attr: 0.8194, loss: 6.7678, grad_norm: 9.7412
2021-08-17 16:24:47,883 - mmdet - INFO - Epoch [1][700/2217] lr: 8.000e-03, eta: 15:41:45, time: 2.064, data_time: 0.060, memory: 20170, loss_cls: 0.3923, loss_offset: 0.9292, loss_depth: 1.4876, loss_size: 1.3778, loss_rotsin: 0.5055, loss_centerness: 0.5904, loss_velo: 0.0599, loss_dir: 0.6774, loss_attr: 0.7970, loss: 6.8171, grad_norm: 10.2380
2021-08-17 16:26:31,016 - mmdet - INFO - Epoch [1][750/2217] lr: 8.000e-03, eta: 15:36:31, time: 2.063, data_time: 0.058, memory: 20170, loss_cls: 0.3900, loss_offset: 0.9222, loss_depth: 1.4244, loss_size: 1.2875, loss_rotsin: 0.4974, loss_centerness: 0.5894, loss_velo: 0.0625, loss_dir: 0.6720, loss_attr: 0.7834, loss: 6.6287, grad_norm: 9.2625
2021-08-17 16:28:14,813 - mmdet - INFO - Epoch [1][800/2217] lr: 8.000e-03, eta: 15:32:05, time: 2.076, data_time: 0.061, memory: 20170, loss_cls: 0.3862, loss_offset: 0.8963, loss_depth: 1.2710, loss_size: 1.3001, loss_rotsin: 0.4988, loss_centerness: 0.5885, loss_velo: 0.0643, loss_dir: 0.6667, loss_attr: 0.7603, loss: 6.4320, grad_norm: 8.4338
2021-08-17 16:29:58,795 - mmdet - INFO - Epoch [1][850/2217] lr: 8.000e-03, eta: 15:28:04, time: 2.080, data_time: 0.062, memory: 20170, loss_cls: 0.3779, loss_offset: 0.8964, loss_depth: 1.2316, loss_size: 1.2531, loss_rotsin: 0.4826, loss_centerness: 0.5882, loss_velo: 0.0615, loss_dir: 0.6629, loss_attr: 0.7326, loss: 6.2867, grad_norm: 7.7503
2021-08-17 16:31:42,597 - mmdet - INFO - Epoch [1][900/2217] lr: 8.000e-03, eta: 15:24:13, time: 2.076, data_time: 0.059, memory: 20170, loss_cls: 0.3771, loss_offset: 0.8916, loss_depth: 1.2270, loss_size: 1.2240, loss_rotsin: 0.4770, loss_centerness: 0.5882, loss_velo: 0.0588, loss_dir: 0.6593, loss_attr: 0.7305, loss: 6.2334, grad_norm: 8.3982
2021-08-17 16:33:26,435 - mmdet - INFO - Epoch [1][950/2217] lr: 8.000e-03, eta: 15:20:36, time: 2.077, data_time: 0.060, memory: 20170, loss_cls: 0.3747, loss_offset: 0.8782, loss_depth: 1.1712, loss_size: 1.2322, loss_rotsin: 0.4728, loss_centerness: 0.5877, loss_velo: 0.0625, loss_dir: 0.6548, loss_attr: 0.7440, loss: 6.1781, grad_norm: 7.7629
2021-08-17 16:35:10,302 - mmdet - INFO - Exp name: fcos3d_r50.py
2021-08-17 16:35:10,303 - mmdet - INFO - Epoch [1][1000/2217] lr: 8.000e-03, eta: 15:17:11, time: 2.077, data_time: 0.061, memory: 20170, loss_cls: 0.3697, loss_offset: 0.8794, loss_depth: 1.2244, loss_size: 1.2265, loss_rotsin: 0.4704, loss_centerness: 0.5873, loss_velo: 0.0619, loss_dir: 0.6523, loss_attr: 0.7169, loss: 6.1887, grad_norm: 8.3894
2021-08-17 16:36:54,014 - mmdet - INFO - Epoch [1][1050/2217] lr: 8.000e-03, eta: 15:13:53, time: 2.074, data_time: 0.059, memory: 20170, loss_cls: 0.3628, loss_offset: 0.8594, loss_depth: 1.2141, loss_size: 1.2484, loss_rotsin: 0.4575, loss_centerness: 0.5875, loss_velo: 0.0624, loss_dir: 0.6450, loss_attr: 0.7051, loss: 6.1422, grad_norm: 8.9713
2021-08-17 16:38:37,676 - mmdet - INFO - Epoch [1][1100/2217] lr: 8.000e-03, eta: 15:10:41, time: 2.073, data_time: 0.058, memory: 20173, loss_cls: 0.3614, loss_offset: 0.8480, loss_depth: 1.2227, loss_size: 1.1891, loss_rotsin: 0.4520, loss_centerness: 0.5865, loss_velo: 0.0641, loss_dir: 0.6387, loss_attr: 0.7014, loss: 6.0640, grad_norm: 8.1417
2021-08-17 16:40:21,771 - mmdet - INFO - Epoch [1][1150/2217] lr: 8.000e-03, eta: 15:07:47, time: 2.082, data_time: 0.057, memory: 20173, loss_cls: 0.3682, loss_offset: 0.8603, loss_depth: 1.1172, loss_size: 1.1763, loss_rotsin: 0.4523, loss_centerness: 0.5870, loss_velo: 0.0626, loss_dir: 0.6346, loss_attr: 0.7016, loss: 5.9601, grad_norm: 7.4380
2021-08-17 16:42:05,918 - mmdet - INFO - Epoch [1][1200/2217] lr: 8.000e-03, eta: 15:05:00, time: 2.083, data_time: 0.062, memory: 20173, loss_cls: 0.3581, loss_offset: 0.8510, loss_depth: 1.1299, loss_size: 1.1799, loss_rotsin: 0.4461, loss_centerness: 0.5866, loss_velo: 0.0593, loss_dir: 0.6325, loss_attr: 0.7092, loss: 5.9525, grad_norm: 7.1213
2021-08-17 16:43:49,516 - mmdet - INFO - Epoch [1][1250/2217] lr: 8.000e-03, eta: 15:02:06, time: 2.072, data_time: 0.058, memory: 20173, loss_cls: 0.3547, loss_offset: 0.8418, loss_depth: 1.1210, loss_size: 1.1156, loss_rotsin: 0.4407, loss_centerness: 0.5859, loss_velo: 0.0589, loss_dir: 0.6273, loss_attr: 0.6656, loss: 5.8115, grad_norm: 7.9142
2021-08-17 16:45:33,094 - mmdet - INFO - Epoch [1][1300/2217] lr: 8.000e-03, eta: 14:59:18, time: 2.072, data_time: 0.059, memory: 20173, loss_cls: 0.3524, loss_offset: 0.8452, loss_depth: 1.1521, loss_size: 1.1430, loss_rotsin: 0.4331, loss_centerness: 0.5859, loss_velo: 0.0590, loss_dir: 0.6248, loss_attr: 0.6620, loss: 5.8575, grad_norm: 7.9402
2021-08-17 16:47:16,733 - mmdet - INFO - Epoch [1][1350/2217] lr: 8.000e-03, eta: 14:56:36, time: 2.073, data_time: 0.055, memory: 20173, loss_cls: 0.3556, loss_offset: 0.8360, loss_depth: 1.1595, loss_size: 1.1604, loss_rotsin: 0.4324, loss_centerness: 0.5854, loss_velo: 0.0629, loss_dir: 0.6220, loss_attr: 0.6979, loss: 5.9121, grad_norm: 8.1770
2021-08-17 16:49:00,785 - mmdet - INFO - Epoch [1][1400/2217] lr: 8.000e-03, eta: 14:54:05, time: 2.081, data_time: 0.060, memory: 20195, loss_cls: 0.3520, loss_offset: 0.8371, loss_depth: 1.0885, loss_size: 1.1283, loss_rotsin: 0.4290, loss_centerness: 0.5857, loss_velo: 0.0611, loss_dir: 0.6177, loss_attr: 0.6666, loss: 5.7660, grad_norm: 8.0902
2021-08-17 16:50:44,967 - mmdet - INFO - Epoch [1][1450/2217] lr: 8.000e-03, eta: 14:51:40, time: 2.084, data_time: 0.057, memory: 20195, loss_cls: 0.3470, loss_offset: 0.8294, loss_depth: 1.1411, loss_size: 1.1644, loss_rotsin: 0.4314, loss_centerness: 0.5850, loss_velo: 0.0619, loss_dir: 0.6150, loss_attr: 0.6430, loss: 5.8182, grad_norm: 8.4376
2021-08-17 16:52:29,103 - mmdet - INFO - Epoch [1][1500/2217] lr: 8.000e-03, eta: 14:49:16, time: 2.083, data_time: 0.056, memory: 20195, loss_cls: 0.3499, loss_offset: 0.8211, loss_depth: 1.0738, loss_size: 1.1258, loss_rotsin: 0.4259, loss_centerness: 0.5852, loss_velo: 0.0607, loss_dir: 0.6151, loss_attr: 0.6626, loss: 5.7201, grad_norm: 7.5501
2021-08-17 16:54:12,962 - mmdet - INFO - Epoch [1][1550/2217] lr: 8.000e-03, eta: 14:46:51, time: 2.077, data_time: 0.060, memory: 20195, loss_cls: 0.3476, loss_offset: 0.8144, loss_depth: 1.1124, loss_size: 1.1102, loss_rotsin: 0.4212, loss_centerness: 0.5848, loss_velo: 0.0603, loss_dir: 0.6148, loss_attr: 0.6297, loss: 5.6953, grad_norm: 7.9234
2021-08-17 16:55:56,459 - mmdet - INFO - Epoch [1][1600/2217] lr: 8.000e-03, eta: 14:44:23, time: 2.070, data_time: 0.059, memory: 20195, loss_cls: 0.3458, loss_offset: 0.8108, loss_depth: 1.1904, loss_size: 1.0929, loss_rotsin: 0.4069, loss_centerness: 0.5844, loss_velo: 0.0629, loss_dir: 0.6065, loss_attr: 0.6544, loss: 5.7552, grad_norm: 8.6614
2021-08-17 16:57:40,291 - mmdet - INFO - Epoch [1][1650/2217] lr: 8.000e-03, eta: 14:42:02, time: 2.077, data_time: 0.060, memory: 20195, loss_cls: 0.3454, loss_offset: 0.8131, loss_depth: 1.0910, loss_size: 1.1345, loss_rotsin: 0.4057, loss_centerness: 0.5842, loss_velo: 0.0645, loss_dir: 0.6007, loss_attr: 0.6594, loss: 5.6985, grad_norm: 7.3117
2021-08-17 16:59:23,859 - mmdet - INFO - Epoch [1][1700/2217] lr: 8.000e-03, eta: 14:39:40, time: 2.071, data_time: 0.055, memory: 20195, loss_cls: 0.3390, loss_offset: 0.8080, loss_depth: 1.0576, loss_size: 1.0973, loss_rotsin: 0.3983, loss_centerness: 0.5842, loss_velo: 0.0630, loss_dir: 0.6047, loss_attr: 0.6216, loss: 5.5737, grad_norm: 7.3930
2021-08-17 17:01:06,912 - mmdet - INFO - Epoch [1][1750/2217] lr: 8.000e-03, eta: 14:37:12, time: 2.061, data_time: 0.060, memory: 20195, loss_cls: 0.3387, loss_offset: 0.8017, loss_depth: 1.0390, loss_size: 1.0674, loss_rotsin: 0.4043, loss_centerness: 0.5840, loss_velo: 0.0586, loss_dir: 0.5988, loss_attr: 0.6229, loss: 5.5153, grad_norm: 7.2822
2021-08-17 17:02:49,820 - mmdet - INFO - Epoch [1][1800/2217] lr: 8.000e-03, eta: 14:34:46, time: 2.058, data_time: 0.059, memory: 20195, loss_cls: 0.3401, loss_offset: 0.8027, loss_depth: 1.1543, loss_size: 1.0611, loss_rotsin: 0.3953, loss_centerness: 0.5839, loss_velo: 0.0613, loss_dir: 0.5959, loss_attr: 0.6326, loss: 5.6271, grad_norm: 8.5373
2021-08-17 17:04:33,060 - mmdet - INFO - Epoch [1][1850/2217] lr: 8.000e-03, eta: 14:32:25, time: 2.065, data_time: 0.060, memory: 20195, loss_cls: 0.3350, loss_offset: 0.7928, loss_depth: 1.0457, loss_size: 1.0485, loss_rotsin: 0.3914, loss_centerness: 0.5835, loss_velo: 0.0645, loss_dir: 0.5880, loss_attr: 0.6081, loss: 5.4575, grad_norm: 7.4626
2021-08-17 17:06:15,918 - mmdet - INFO - Epoch [1][1900/2217] lr: 8.000e-03, eta: 14:30:02, time: 2.057, data_time: 0.058, memory: 20195, loss_cls: 0.3319, loss_offset: 0.7862, loss_depth: 1.1485, loss_size: 1.0612, loss_rotsin: 0.3938, loss_centerness: 0.5835, loss_velo: 0.0644, loss_dir: 0.5920, loss_attr: 0.6158, loss: 5.5774, grad_norm: 8.1946
2021-08-17 17:07:59,586 - mmdet - INFO - Epoch [1][1950/2217] lr: 8.000e-03, eta: 14:27:52, time: 2.073, data_time: 0.059, memory: 20195, loss_cls: 0.3347, loss_offset: 0.7957, loss_depth: 1.0601, loss_size: 1.1149, loss_rotsin: 0.3956, loss_centerness: 0.5837, loss_velo: 0.0618, loss_dir: 0.5922, loss_attr: 0.6118, loss: 5.5506, grad_norm: 7.7123
2021-08-17 17:09:42,858 - mmdet - INFO - Exp name: fcos3d_r50.py
2021-08-17 17:09:42,858 - mmdet - INFO - Epoch [1][2000/2217] lr: 8.000e-03, eta: 14:25:37, time: 2.065, data_time: 0.054, memory: 20195, loss_cls: 0.3325, loss_offset: 0.7838, loss_depth: 1.0728, loss_size: 1.0675, loss_rotsin: 0.3901, loss_centerness: 0.5829, loss_velo: 0.0636, loss_dir: 0.5838, loss_attr: 0.6189, loss: 5.4959, grad_norm: 7.5540
2021-08-17 17:11:26,417 - mmdet - INFO - Epoch [1][2050/2217] lr: 8.000e-03, eta: 14:23:28, time: 2.071, data_time: 0.056, memory: 20195, loss_cls: 0.3274, loss_offset: 0.7830, loss_depth: 1.0374, loss_size: 1.0587, loss_rotsin: 0.3839, loss_centerness: 0.5830, loss_velo: 0.0629, loss_dir: 0.5783, loss_attr: 0.6140, loss: 5.4286, grad_norm: 7.5329
2021-08-17 17:13:10,893 - mmdet - INFO - Epoch [1][2100/2217] lr: 8.000e-03, eta: 14:21:30, time: 2.090, data_time: 0.063, memory: 20195, loss_cls: 0.3318, loss_offset: 0.7820, loss_depth: 1.1487, loss_size: 1.0495, loss_rotsin: 0.3883, loss_centerness: 0.5825, loss_velo: 0.0589, loss_dir: 0.5874, loss_attr: 0.5786, loss: 5.5077, grad_norm: 8.6898
2021-08-17 17:14:55,021 - mmdet - INFO - Epoch [1][2150/2217] lr: 8.000e-03, eta: 14:19:30, time: 2.083, data_time: 0.057, memory: 20195, loss_cls: 0.3263, loss_offset: 0.7756, loss_depth: 1.0094, loss_size: 1.0102, loss_rotsin: 0.3778, loss_centerness: 0.5829, loss_velo: 0.0594, loss_dir: 0.5816, loss_attr: 0.5896, loss: 5.3128, grad_norm: 7.3155
2021-08-17 17:16:38,809 - mmdet - INFO - Epoch [1][2200/2217] lr: 8.000e-03, eta: 14:17:26, time: 2.076, data_time: 0.055, memory: 20195, loss_cls: 0.3302, loss_offset: 0.7809, loss_depth: 1.1140, loss_size: 1.0282, loss_rotsin: 0.3867, loss_centerness: 0.5831, loss_velo: 0.0642, loss_dir: 0.5868, loss_attr: 0.5932, loss: 5.4671, grad_norm: 8.6053
2021-08-17 17:17:14,726 - mmdet - INFO - Saving checkpoint at 1 epochs
2021-08-17 17:19:06,900 - mmdet - INFO - Epoch [2][50/2217] lr: 8.000e-03, eta: 14:09:40, time: 2.220, data_time: 0.205, memory: 20195, loss_cls: 0.3256, loss_offset: 0.7723, loss_depth: 1.0303, loss_size: 0.9871, loss_rotsin: 0.3777, loss_centerness: 0.5831, loss_velo: 0.0610, loss_dir: 0.5748, loss_attr: 0.5726, loss: 5.2844, grad_norm: 7.5305
2021-08-17 17:20:50,437 - mmdet - INFO - Epoch [2][100/2217] lr: 8.000e-03, eta: 14:07:42, time: 2.071, data_time: 0.057, memory: 20195, loss_cls: 0.3218, loss_offset: 0.7681, loss_depth: 1.0703, loss_size: 1.0194, loss_rotsin: 0.3748, loss_centerness: 0.5824, loss_velo: 0.0617, loss_dir: 0.5838, loss_attr: 0.5757, loss: 5.3580, grad_norm: 8.1695
2021-08-17 17:22:33,499 - mmdet - INFO - Epoch [2][150/2217] lr: 8.000e-03, eta: 14:05:41, time: 2.061, data_time: 0.055, memory: 20195, loss_cls: 0.3248, loss_offset: 0.7693, loss_depth: 0.9894, loss_size: 0.9727, loss_rotsin: 0.3704, loss_centerness: 0.5826, loss_velo: 0.0595, loss_dir: 0.5761, loss_attr: 0.5499, loss: 5.1948, grad_norm: 7.1592
2021-08-17 17:24:16,307 - mmdet - INFO - Epoch [2][200/2217] lr: 8.000e-03, eta: 14:03:37, time: 2.056, data_time: 0.055, memory: 20195, loss_cls: 0.3256, loss_offset: 0.7680, loss_depth: 1.0248, loss_size: 1.0135, loss_rotsin: 0.3678, loss_centerness: 0.5829, loss_velo: 0.0612, loss_dir: 0.5725, loss_attr: 0.5589, loss: 5.2751, grad_norm: 7.5411
2021-08-17 17:25:59,561 - mmdet - INFO - Epoch [2][250/2217] lr: 8.000e-03, eta: 14:01:39, time: 2.065, data_time: 0.056, memory: 20195, loss_cls: 0.3221, loss_offset: 0.7617, loss_depth: 0.9953, loss_size: 1.0110, loss_rotsin: 0.3630, loss_centerness: 0.5822, loss_velo: 0.0589, loss_dir: 0.5715, loss_attr: 0.5719, loss: 5.2375, grad_norm: 7.3857
2021-08-17 17:27:41,968 - mmdet - INFO - Epoch [2][300/2217] lr: 8.000e-03, eta: 13:59:34, time: 2.048, data_time: 0.058, memory: 20195, loss_cls: 0.3169, loss_offset: 0.7617, loss_depth: 0.9701, loss_size: 0.9595, loss_rotsin: 0.3579, loss_centerness: 0.5822, loss_velo: 0.0628, loss_dir: 0.5647, loss_attr: 0.5599, loss: 5.1356, grad_norm: 7.2501
2021-08-17 17:29:24,869 - mmdet - INFO - Epoch [2][350/2217] lr: 8.000e-03, eta: 13:57:33, time: 2.058, data_time: 0.058, memory: 20195, loss_cls: 0.3189, loss_offset: 0.7557, loss_depth: 0.9347, loss_size: 0.9658, loss_rotsin: 0.3626, loss_centerness: 0.5823, loss_velo: 0.0584, loss_dir: 0.5664, loss_attr: 0.5592, loss: 5.1039, grad_norm: 6.9219
2021-08-17 17:31:08,228 - mmdet - INFO - Epoch [2][400/2217] lr: 8.000e-03, eta: 13:55:38, time: 2.067, data_time: 0.055, memory: 20195, loss_cls: 0.3163, loss_offset: 0.7637, loss_depth: 1.0033, loss_size: 1.0027, loss_rotsin: 0.3569, loss_centerness: 0.5820, loss_velo: 0.0610, loss_dir: 0.5661, loss_attr: 0.5352, loss: 5.1872, grad_norm: 8.1824
2021-08-17 17:32:52,743 - mmdet - INFO - Epoch [2][450/2217] lr: 8.000e-03, eta: 13:53:54, time: 2.090, data_time: 0.058, memory: 20195, loss_cls: 0.3176, loss_offset: 0.7517, loss_depth: 1.0179, loss_size: 0.9931, loss_rotsin: 0.3518, loss_centerness: 0.5816, loss_velo: 0.0606, loss_dir: 0.5618, loss_attr: 0.5370, loss: 5.1731, grad_norm: 7.8111
2021-08-17 17:34:37,193 - mmdet - INFO - Epoch [2][500/2217] lr: 8.000e-03, eta: 13:52:08, time: 2.089, data_time: 0.061, memory: 20195, loss_cls: 0.3152, loss_offset: 0.7517, loss_depth: 0.9227, loss_size: 0.9722, loss_rotsin: 0.3548, loss_centerness: 0.5814, loss_velo: 0.0611, loss_dir: 0.5599, loss_attr: 0.5314, loss: 5.0505, grad_norm: 7.0899
2021-08-17 17:36:22,076 - mmdet - INFO - Epoch [2][550/2217] lr: 8.000e-03, eta: 13:50:27, time: 2.098, data_time: 0.058, memory: 20195, loss_cls: 0.3169, loss_offset: 0.7506, loss_depth: 0.9860, loss_size: 0.9613, loss_rotsin: 0.3551, loss_centerness: 0.5815, loss_velo: 0.0617, loss_dir: 0.5543, loss_attr: 0.5520, loss: 5.1194, grad_norm: 7.7157
2021-08-17 17:38:06,355 - mmdet - INFO - Epoch [2][600/2217] lr: 8.000e-03, eta: 13:48:41, time: 2.086, data_time: 0.060, memory: 20195, loss_cls: 0.3140, loss_offset: 0.7509, loss_depth: 1.0249, loss_size: 0.9810, loss_rotsin: 0.3538, loss_centerness: 0.5815, loss_velo: 0.0605, loss_dir: 0.5535, loss_attr: 0.5402, loss: 5.1604, grad_norm: 8.3446
2021-08-17 17:39:51,069 - mmdet - INFO - Epoch [2][650/2217] lr: 8.000e-03, eta: 13:46:58, time: 2.094, data_time: 0.057, memory: 20195, loss_cls: 0.3205, loss_offset: 0.7512, loss_depth: 1.0187, loss_size: 1.0060, loss_rotsin: 0.3510, loss_centerness: 0.5815, loss_velo: 0.0620, loss_dir: 0.5567, loss_attr: 0.5530, loss: 5.2006, grad_norm: 8.0174
2021-08-17 17:41:35,687 - mmdet - INFO - Epoch [2][700/2217] lr: 8.000e-03, eta: 13:45:14, time: 2.092, data_time: 0.060, memory: 20195, loss_cls: 0.3128, loss_offset: 0.7436, loss_depth: 0.9915, loss_size: 0.9351, loss_rotsin: 0.3522, loss_centerness: 0.5808, loss_velo: 0.0605, loss_dir: 0.5613, loss_attr: 0.5308, loss: 5.0686, grad_norm: 7.9365
2021-08-17 17:43:19,887 - mmdet - INFO - Epoch [2][750/2217] lr: 8.000e-03, eta: 13:43:27, time: 2.084, data_time: 0.056, memory: 20195, loss_cls: 0.3165, loss_offset: 0.7524, loss_depth: 1.0128, loss_size: 0.9576, loss_rotsin: 0.3521, loss_centerness: 0.5816, loss_velo: 0.0602, loss_dir: 0.5624, loss_attr: 0.5287, loss: 5.1243, grad_norm: 7.5636
2021-08-17 17:45:03,889 - mmdet - INFO - Epoch [2][800/2217] lr: 8.000e-03, eta: 13:41:39, time: 2.080, data_time: 0.057, memory: 20195, loss_cls: 0.3116, loss_offset: 0.7467, loss_depth: 0.9230, loss_size: 0.9636, loss_rotsin: 0.3519, loss_centerness: 0.5813, loss_velo: 0.0611, loss_dir: 0.5582, loss_attr: 0.5285, loss: 5.0258, grad_norm: 6.9015
2021-08-17 17:46:47,566 - mmdet - INFO - Epoch [2][850/2217] lr: 8.000e-03, eta: 13:39:48, time: 2.074, data_time: 0.060, memory: 20195, loss_cls: 0.3132, loss_offset: 0.7487, loss_depth: 0.9282, loss_size: 0.9627, loss_rotsin: 0.3471, loss_centerness: 0.5816, loss_velo: 0.0601, loss_dir: 0.5575, loss_attr: 0.5442, loss: 5.0433, grad_norm: 7.1847
2021-08-17 17:48:31,126 - mmdet - INFO - Epoch [2][900/2217] lr: 8.000e-03, eta: 13:37:56, time: 2.071, data_time: 0.060, memory: 20195, loss_cls: 0.3082, loss_offset: 0.7364, loss_depth: 0.9934, loss_size: 0.9569, loss_rotsin: 0.3427, loss_centerness: 0.5813, loss_velo: 0.0631, loss_dir: 0.5502, loss_attr: 0.5252, loss: 5.0572, grad_norm: 7.8060
2021-08-17 17:50:14,888 - mmdet - INFO - Epoch [2][950/2217] lr: 8.000e-03, eta: 13:36:06, time: 2.075, data_time: 0.061, memory: 20195, loss_cls: 0.3113, loss_offset: 0.7435, loss_depth: 0.9093, loss_size: 0.9538, loss_rotsin: 0.3405, loss_centerness: 0.5814, loss_velo: 0.0596, loss_dir: 0.5556, loss_attr: 0.5348, loss: 4.9897, grad_norm: 6.7631
2021-08-17 17:51:58,850 - mmdet - INFO - Epoch [2][1000/2217] lr: 8.000e-03, eta: 13:34:18, time: 2.079, data_time: 0.059, memory: 20195, loss_cls: 0.3156, loss_offset: 0.7403, loss_depth: 0.9323, loss_size: 0.9540, loss_rotsin: 0.3465, loss_centerness: 0.5811, loss_velo: 0.0606, loss_dir: 0.5504, loss_attr: 0.5350, loss: 5.0157, grad_norm: 7.4704
2021-08-17 17:53:42,371 - mmdet - INFO - Epoch [2][1050/2217] lr: 8.000e-03, eta: 13:32:27, time: 2.070, data_time: 0.060, memory: 20195, loss_cls: 0.3096, loss_offset: 0.7407, loss_depth: 0.9881, loss_size: 0.9347, loss_rotsin: 0.3405, loss_centerness: 0.5810, loss_velo: 0.0621, loss_dir: 0.5474, loss_attr: 0.5338, loss: 5.0379, grad_norm: 7.8760
2021-08-17 17:55:26,277 - mmdet - INFO - Epoch [2][1100/2217] lr: 8.000e-03, eta: 13:30:39, time: 2.078, data_time: 0.059, memory: 20195, loss_cls: 0.3103, loss_offset: 0.7396, loss_depth: 0.9713, loss_size: 0.9491, loss_rotsin: 0.3489, loss_centerness: 0.5808, loss_velo: 0.0639, loss_dir: 0.5439, loss_attr: 0.5264, loss: 5.0342, grad_norm: 7.4597
2021-08-17 17:57:09,704 - mmdet - INFO - Epoch [2][1150/2217] lr: 8.000e-03, eta: 13:28:48, time: 2.069, data_time: 0.057, memory: 20195, loss_cls: 0.3064, loss_offset: 0.7251, loss_depth: 0.9429, loss_size: 0.9017, loss_rotsin: 0.3281, loss_centerness: 0.5803, loss_velo: 0.0625, loss_dir: 0.5411, loss_attr: 0.5045, loss: 4.8927, grad_norm: 7.6257
2021-08-17 17:58:52,979 - mmdet - INFO - Epoch [2][1200/2217] lr: 8.000e-03, eta: 13:26:55, time: 2.065, data_time: 0.059, memory: 20195, loss_cls: 0.3105, loss_offset: 0.7245, loss_depth: 0.9252, loss_size: 0.9199, loss_rotsin: 0.3380, loss_centerness: 0.5806, loss_velo: 0.0647, loss_dir: 0.5495, loss_attr: 0.5314, loss: 4.9442, grad_norm: 7.3732
2021-08-17 18:00:35,895 - mmdet - INFO - Epoch [2][1250/2217] lr: 8.000e-03, eta: 13:25:01, time: 2.058, data_time: 0.059, memory: 20195, loss_cls: 0.3084, loss_offset: 0.7294, loss_depth: 0.8934, loss_size: 0.9178, loss_rotsin: 0.3344, loss_centerness: 0.5803, loss_velo: 0.0603, loss_dir: 0.5427, loss_attr: 0.5417, loss: 4.9084, grad_norm: 6.9132
2021-08-17 18:02:19,318 - mmdet - INFO - Epoch [2][1300/2217] lr: 8.000e-03, eta: 13:23:10, time: 2.068, data_time: 0.070, memory: 20195, loss_cls: 0.3052, loss_offset: 0.7270, loss_depth: 0.9769, loss_size: 0.9176, loss_rotsin: 0.3371, loss_centerness: 0.5806, loss_velo: 0.0594, loss_dir: 0.5385, loss_attr: 0.5116, loss: 4.9537, grad_norm: 7.8889
2021-08-17 18:04:02,382 - mmdet - INFO - Epoch [2][1350/2217] lr: 8.000e-03, eta: 13:21:18, time: 2.061, data_time: 0.067, memory: 20195, loss_cls: 0.3040, loss_offset: 0.7215, loss_depth: 0.9405, loss_size: 0.9497, loss_rotsin: 0.3289, loss_centerness: 0.5801, loss_velo: 0.0652, loss_dir: 0.5333, loss_attr: 0.5097, loss: 4.9327, grad_norm: 7.7435
2021-08-17 18:05:45,446 - mmdet - INFO - Epoch [2][1400/2217] lr: 8.000e-03, eta: 13:19:25, time: 2.061, data_time: 0.064, memory: 20195, loss_cls: 0.3039, loss_offset: 0.7295, loss_depth: 0.9315, loss_size: 0.9232, loss_rotsin: 0.3416, loss_centerness: 0.5805, loss_velo: 0.0624, loss_dir: 0.5413, loss_attr: 0.5058, loss: 4.9195, grad_norm: 7.3260
2021-08-17 18:07:29,092 - mmdet - INFO - Epoch [2][1450/2217] lr: 8.000e-03, eta: 13:17:36, time: 2.073, data_time: 0.063, memory: 20195, loss_cls: 0.3040, loss_offset: 0.7227, loss_depth: 0.9009, loss_size: 0.9303, loss_rotsin: 0.3286, loss_centerness: 0.5801, loss_velo: 0.0627, loss_dir: 0.5338, loss_attr: 0.5195, loss: 4.8825, grad_norm: 7.0219
2021-08-17 18:09:12,394 - mmdet - INFO - Epoch [2][1500/2217] lr: 8.000e-03, eta: 13:15:46, time: 2.066, data_time: 0.066, memory: 20195, loss_cls: 0.3022, loss_offset: 0.7150, loss_depth: 0.9214, loss_size: 0.9230, loss_rotsin: 0.3231, loss_centerness: 0.5798, loss_velo: 0.0618, loss_dir: 0.5327, loss_attr: 0.5014, loss: 4.8603, grad_norm: 7.4723
2021-08-17 18:10:55,573 - mmdet - INFO - Epoch [2][1550/2217] lr: 8.000e-03, eta: 13:13:55, time: 2.064, data_time: 0.063, memory: 20195, loss_cls: 0.3073, loss_offset: 0.7281, loss_depth: 0.9538, loss_size: 0.9157, loss_rotsin: 0.3308, loss_centerness: 0.5806, loss_velo: 0.0638, loss_dir: 0.5321, loss_attr: 0.5177, loss: 4.9299, grad_norm: 7.5720
2021-08-17 18:12:38,944 - mmdet - INFO - Epoch [2][1600/2217] lr: 8.000e-03, eta: 13:12:05, time: 2.067, data_time: 0.067, memory: 20195, loss_cls: 0.3001, loss_offset: 0.7210, loss_depth: 0.9883, loss_size: 0.9079, loss_rotsin: 0.3147, loss_centerness: 0.5801, loss_velo: 0.0608, loss_dir: 0.5270, loss_attr: 0.5016, loss: 4.9014, grad_norm: 8.3760
2021-08-17 18:14:22,151 - mmdet - INFO - Epoch [2][1650/2217] lr: 8.000e-03, eta: 13:10:14, time: 2.064, data_time: 0.065, memory: 20195, loss_cls: 0.3004, loss_offset: 0.7175, loss_depth: 0.9581, loss_size: 0.8967, loss_rotsin: 0.3258, loss_centerness: 0.5805, loss_velo: 0.0600, loss_dir: 0.5204, loss_attr: 0.5067, loss: 4.8661, grad_norm: 7.9068
2021-08-17 18:16:05,323 - mmdet - INFO - Epoch [2][1700/2217] lr: 8.000e-03, eta: 13:08:24, time: 2.064, data_time: 0.064, memory: 20195, loss_cls: 0.3049, loss_offset: 0.7160, loss_depth: 0.9728, loss_size: 0.9289, loss_rotsin: 0.3262, loss_centerness: 0.5804, loss_velo: 0.0598, loss_dir: 0.5327, loss_attr: 0.4841, loss: 4.9057, grad_norm: 7.9856
2021-08-17 18:17:48,622 - mmdet - INFO - Epoch [2][1750/2217] lr: 8.000e-03, eta: 13:06:34, time: 2.066, data_time: 0.066, memory: 20195, loss_cls: 0.3022, loss_offset: 0.7218, loss_depth: 0.9037, loss_size: 0.8770, loss_rotsin: 0.3213, loss_centerness: 0.5803, loss_velo: 0.0630, loss_dir: 0.5299, loss_attr: 0.4906, loss: 4.7896, grad_norm: 7.0212
2021-08-17 18:19:31,719 - mmdet - INFO - Epoch [2][1800/2217] lr: 8.000e-03, eta: 13:04:43, time: 2.062, data_time: 0.064, memory: 20195, loss_cls: 0.3013, loss_offset: 0.7102, loss_depth: 0.9449, loss_size: 0.9162, loss_rotsin: 0.3166, loss_centerness: 0.5794, loss_velo: 0.0628, loss_dir: 0.5290, loss_attr: 0.4929, loss: 4.8534, grad_norm: 7.7521
2021-08-17 18:21:14,870 - mmdet - INFO - Epoch [2][1850/2217] lr: 8.000e-03, eta: 13:02:53, time: 2.063, data_time: 0.062, memory: 20195, loss_cls: 0.2965, loss_offset: 0.7122, loss_depth: 0.9257, loss_size: 0.8680, loss_rotsin: 0.3106, loss_centerness: 0.5798, loss_velo: 0.0609, loss_dir: 0.5268, loss_attr: 0.4781, loss: 4.7585, grad_norm: 7.6994
2021-08-17 18:22:58,302 - mmdet - INFO - Epoch [2][1900/2217] lr: 8.000e-03, eta: 13:01:04, time: 2.069, data_time: 0.067, memory: 20195, loss_cls: 0.2970, loss_offset: 0.7125, loss_depth: 0.9411, loss_size: 0.8844, loss_rotsin: 0.3132, loss_centerness: 0.5801, loss_velo: 0.0592, loss_dir: 0.5286, loss_attr: 0.4711, loss: 4.7872, grad_norm: 7.9689
2021-08-17 18:24:41,574 - mmdet - INFO - Epoch [2][1950/2217] lr: 8.000e-03, eta: 12:59:15, time: 2.065, data_time: 0.074, memory: 20195, loss_cls: 0.2971, loss_offset: 0.7049, loss_depth: 0.8671, loss_size: 0.8965, loss_rotsin: 0.3083, loss_centerness: 0.5796, loss_velo: 0.0646, loss_dir: 0.5200, loss_attr: 0.4936, loss: 4.7317, grad_norm: 6.4773
2021-08-17 18:26:24,758 - mmdet - INFO - Epoch [2][2000/2217] lr: 8.000e-03, eta: 12:57:26, time: 2.064, data_time: 0.068, memory: 20195, loss_cls: 0.2989, loss_offset: 0.7052, loss_depth: 0.8722, loss_size: 0.8899, loss_rotsin: 0.3132, loss_centerness: 0.5798, loss_velo: 0.0613, loss_dir: 0.5267, loss_attr: 0.4924, loss: 4.7395, grad_norm: 7.2441
2021-08-17 18:28:07,791 - mmdet - INFO - Epoch [2][2050/2217] lr: 8.000e-03, eta: 12:55:36, time: 2.061, data_time: 0.070, memory: 20195, loss_cls: 0.3003, loss_offset: 0.7085, loss_depth: 0.9558, loss_size: 0.9068, loss_rotsin: 0.3128, loss_centerness: 0.5797, loss_velo: 0.0606, loss_dir: 0.5229, loss_attr: 0.4922, loss: 4.8395, grad_norm: 8.0839
2021-08-17 18:29:50,884 - mmdet - INFO - Epoch [2][2100/2217] lr: 8.000e-03, eta: 12:53:46, time: 2.062, data_time: 0.066, memory: 20195, loss_cls: 0.2965, loss_offset: 0.7085, loss_depth: 0.9249, loss_size: 0.8729, loss_rotsin: 0.3036, loss_centerness: 0.5793, loss_velo: 0.0628, loss_dir: 0.5070, loss_attr: 0.4570, loss: 4.7125, grad_norm: 7.3811
2021-08-17 18:31:34,103 - mmdet - INFO - Epoch [2][2150/2217] lr: 8.000e-03, eta: 12:51:57, time: 2.064, data_time: 0.067, memory: 20195, loss_cls: 0.2944, loss_offset: 0.7094, loss_depth: 0.8622, loss_size: 0.8578, loss_rotsin: 0.3038, loss_centerness: 0.5796, loss_velo: 0.0609, loss_dir: 0.5177, loss_attr: 0.4778, loss: 4.6635, grad_norm: 6.7897
2021-08-17 18:33:17,494 - mmdet - INFO - Epoch [2][2200/2217] lr: 8.000e-03, eta: 12:50:09, time: 2.068, data_time: 0.060, memory: 20195, loss_cls: 0.3011, loss_offset: 0.7109, loss_depth: 0.9773, loss_size: 0.9244, loss_rotsin: 0.3118, loss_centerness: 0.5797, loss_velo: 0.0631, loss_dir: 0.5209, loss_attr: 0.4950, loss: 4.8842, grad_norm: 8.1829
2021-08-17 18:33:53,279 - mmdet - INFO - Saving checkpoint at 2 epochs
2021-08-17 18:35:45,740 - mmdet - INFO - Epoch [3][50/2217] lr: 8.000e-03, eta: 12:45:30, time: 2.226, data_time: 0.215, memory: 20195, loss_cls: 0.2917, loss_offset: 0.6931, loss_depth: 0.8612, loss_size: 0.8473, loss_rotsin: 0.3012, loss_centerness: 0.5792, loss_velo: 0.0607, loss_dir: 0.5056, loss_attr: 0.4295, loss: 4.5695, grad_norm: 7.4053
2021-08-17 18:37:28,838 - mmdet - INFO - Epoch [3][100/2217] lr: 8.000e-03, eta: 12:43:43, time: 2.062, data_time: 0.058, memory: 20195, loss_cls: 0.2915, loss_offset: 0.6905, loss_depth: 0.8432, loss_size: 0.8600, loss_rotsin: 0.3036, loss_centerness: 0.5791, loss_velo: 0.0606, loss_dir: 0.5093, loss_attr: 0.4535, loss: 4.5913, grad_norm: 7.2038
2021-08-17 18:39:11,351 - mmdet - INFO - Epoch [3][150/2217] lr: 8.000e-03, eta: 12:41:53, time: 2.050, data_time: 0.057, memory: 20195, loss_cls: 0.2928, loss_offset: 0.6960, loss_depth: 0.8167, loss_size: 0.8327, loss_rotsin: 0.3039, loss_centerness: 0.5793, loss_velo: 0.0632, loss_dir: 0.5114, loss_attr: 0.4571, loss: 4.5531, grad_norm: 6.8449
2021-08-17 18:40:53,782 - mmdet - INFO - Epoch [3][200/2217] lr: 8.000e-03, eta: 12:40:02, time: 2.049, data_time: 0.058, memory: 20195, loss_cls: 0.2912, loss_offset: 0.6941, loss_depth: 0.8704, loss_size: 0.8411, loss_rotsin: 0.3069, loss_centerness: 0.5798, loss_velo: 0.0609, loss_dir: 0.5088, loss_attr: 0.4508, loss: 4.6040, grad_norm: 7.3849
2021-08-17 18:42:37,048 - mmdet - INFO - Epoch [3][250/2217] lr: 8.000e-03, eta: 12:38:16, time: 2.065, data_time: 0.063, memory: 20195, loss_cls: 0.2909, loss_offset: 0.6945, loss_depth: 0.9048, loss_size: 0.8588, loss_rotsin: 0.2971, loss_centerness: 0.5791, loss_velo: 0.0646, loss_dir: 0.5064, loss_attr: 0.4481, loss: 4.6442, grad_norm: 7.8431
2021-08-17 18:44:19,832 - mmdet - INFO - Epoch [3][300/2217] lr: 8.000e-03, eta: 12:36:28, time: 2.056, data_time: 0.060, memory: 20195, loss_cls: 0.2866, loss_offset: 0.6844, loss_depth: 0.8950, loss_size: 0.8146, loss_rotsin: 0.3102, loss_centerness: 0.5786, loss_velo: 0.0611, loss_dir: 0.5061, loss_attr: 0.4293, loss: 4.5658, grad_norm: 7.7514
2021-08-17 18:46:03,003 - mmdet - INFO - Epoch [3][350/2217] lr: 8.000e-03, eta: 12:34:41, time: 2.063, data_time: 0.060, memory: 20195, loss_cls: 0.2927, loss_offset: 0.6895, loss_depth: 0.8967, loss_size: 0.8191, loss_rotsin: 0.3053, loss_centerness: 0.5785, loss_velo: 0.0612, loss_dir: 0.5087, loss_attr: 0.4574, loss: 4.6092, grad_norm: 7.9694
2021-08-17 18:47:46,188 - mmdet - INFO - Epoch [3][400/2217] lr: 8.000e-03, eta: 12:32:55, time: 2.064, data_time: 0.060, memory: 20195, loss_cls: 0.2874, loss_offset: 0.6901, loss_depth: 0.8771, loss_size: 0.8234, loss_rotsin: 0.2969, loss_centerness: 0.5789, loss_velo: 0.0627, loss_dir: 0.5009, loss_attr: 0.4482, loss: 4.5657, grad_norm: 7.3579
2021-08-17 18:49:29,941 - mmdet - INFO - Epoch [3][450/2217] lr: 8.000e-03, eta: 12:31:11, time: 2.075, data_time: 0.059, memory: 20195, loss_cls: 0.2914, loss_offset: 0.6944, loss_depth: 0.9695, loss_size: 0.8577, loss_rotsin: 0.2952, loss_centerness: 0.5788, loss_velo: 0.0633, loss_dir: 0.5046, loss_attr: 0.4680, loss: 4.7228, grad_norm: 8.0002
2021-08-17 18:51:13,154 - mmdet - INFO - Epoch [3][500/2217] lr: 8.000e-03, eta: 12:29:25, time: 2.064, data_time: 0.055, memory: 20195, loss_cls: 0.2893, loss_offset: 0.6907, loss_depth: 0.8422, loss_size: 0.8322, loss_rotsin: 0.3043, loss_centerness: 0.5788, loss_velo: 0.0605, loss_dir: 0.5073, loss_attr: 0.4482, loss: 4.5534, grad_norm: 7.2217
2021-08-17 18:52:56,642 - mmdet - INFO - Epoch [3][550/2217] lr: 8.000e-03, eta: 12:27:40, time: 2.070, data_time: 0.058, memory: 20195, loss_cls: 0.2897, loss_offset: 0.6880, loss_depth: 0.9060, loss_size: 0.8267, loss_rotsin: 0.3013, loss_centerness: 0.5785, loss_velo: 0.0613, loss_dir: 0.5054, loss_attr: 0.4502, loss: 4.6069, grad_norm: 7.8085
2021-08-17 18:54:40,044 - mmdet - INFO - Epoch [3][600/2217] lr: 8.000e-03, eta: 12:25:55, time: 2.068, data_time: 0.058, memory: 20195, loss_cls: 0.2836, loss_offset: 0.6864, loss_depth: 0.8430, loss_size: 0.8262, loss_rotsin: 0.2909, loss_centerness: 0.5788, loss_velo: 0.0637, loss_dir: 0.4919, loss_attr: 0.4442, loss: 4.5088, grad_norm: 6.9781
2021-08-17 18:56:23,537 - mmdet - INFO - Epoch [3][650/2217] lr: 8.000e-03, eta: 12:24:10, time: 2.070, data_time: 0.054, memory: 20195, loss_cls: 0.2856, loss_offset: 0.6961, loss_depth: 0.8854, loss_size: 0.8175, loss_rotsin: 0.3101, loss_centerness: 0.5791, loss_velo: 0.0589, loss_dir: 0.5151, loss_attr: 0.4546, loss: 4.6024, grad_norm: 7.7607
2021-08-17 18:58:06,860 - mmdet - INFO - Epoch [3][700/2217] lr: 8.000e-03, eta: 12:22:24, time: 2.066, data_time: 0.055, memory: 20195, loss_cls: 0.2854, loss_offset: 0.6859, loss_depth: 0.9180, loss_size: 0.8257, loss_rotsin: 0.2919, loss_centerness: 0.5781, loss_velo: 0.0644, loss_dir: 0.4984, loss_attr: 0.4327, loss: 4.5804, grad_norm: 8.1483
2021-08-17 18:59:50,480 - mmdet - INFO - Epoch [3][750/2217] lr: 8.000e-03, eta: 12:20:40, time: 2.072, data_time: 0.057, memory: 20195, loss_cls: 0.2858, loss_offset: 0.6762, loss_depth: 0.9245, loss_size: 0.8166, loss_rotsin: 0.2795, loss_centerness: 0.5780, loss_velo: 0.0618, loss_dir: 0.4858, loss_attr: 0.4537, loss: 4.5618, grad_norm: 8.2425
2021-08-17 19:01:34,020 - mmdet - INFO - Epoch [3][800/2217] lr: 8.000e-03, eta: 12:18:56, time: 2.071, data_time: 0.060, memory: 20195, loss_cls: 0.2863, loss_offset: 0.6853, loss_depth: 0.8717, loss_size: 0.8389, loss_rotsin: 0.2899, loss_centerness: 0.5785, loss_velo: 0.0619, loss_dir: 0.4971, loss_attr: 0.4343, loss: 4.5440, grad_norm: 7.7922
2021-08-17 19:03:17,554 - mmdet - INFO - Epoch [3][850/2217] lr: 8.000e-03, eta: 12:17:11, time: 2.071, data_time: 0.054, memory: 20195, loss_cls: 0.2871, loss_offset: 0.6861, loss_depth: 0.8547, loss_size: 0.8354, loss_rotsin: 0.2949, loss_centerness: 0.5784, loss_velo: 0.0621, loss_dir: 0.4999, loss_attr: 0.4357, loss: 4.5344, grad_norm: 7.3368
2021-08-17 19:05:00,765 - mmdet - INFO - Epoch [3][900/2217] lr: 8.000e-03, eta: 12:15:25, time: 2.064, data_time: 0.054, memory: 20195, loss_cls: 0.2834, loss_offset: 0.6810, loss_depth: 0.7951, loss_size: 0.8230, loss_rotsin: 0.2917, loss_centerness: 0.5782, loss_velo: 0.0581, loss_dir: 0.4956, loss_attr: 0.4344, loss: 4.4406, grad_norm: 7.0878
2021-08-17 19:06:44,036 - mmdet - INFO - Epoch [3][950/2217] lr: 8.000e-03, eta: 12:13:40, time: 2.065, data_time: 0.057, memory: 20195, loss_cls: 0.2858, loss_offset: 0.6734, loss_depth: 0.8548, loss_size: 0.8001, loss_rotsin: 0.2912, loss_centerness: 0.5780, loss_velo: 0.0606, loss_dir: 0.5061, loss_attr: 0.4234, loss: 4.4732, grad_norm: 7.8576
2021-08-17 19:08:27,296 - mmdet - INFO - Epoch [3][1000/2217] lr: 8.000e-03, eta: 12:11:54, time: 2.065, data_time: 0.053, memory: 20195, loss_cls: 0.2847, loss_offset: 0.6785, loss_depth: 0.9289, loss_size: 0.8387, loss_rotsin: 0.2920, loss_centerness: 0.5782, loss_velo: 0.0623, loss_dir: 0.4950, loss_attr: 0.4310, loss: 4.5893, grad_norm: 8.3274
2021-08-17 19:10:10,772 - mmdet - INFO - Epoch [3][1050/2217] lr: 8.000e-03, eta: 12:10:10, time: 2.070, data_time: 0.052, memory: 20195, loss_cls: 0.2808, loss_offset: 0.6756, loss_depth: 0.8077, loss_size: 0.7869, loss_rotsin: 0.2790, loss_centerness: 0.5780, loss_velo: 0.0621, loss_dir: 0.4829, loss_attr: 0.4218, loss: 4.3748, grad_norm: 6.6823
2021-08-17 19:11:54,293 - mmdet - INFO - Epoch [3][1100/2217] lr: 8.000e-03, eta: 12:08:25, time: 2.070, data_time: 0.050, memory: 20195, loss_cls: 0.2821, loss_offset: 0.6737, loss_depth: 0.8928, loss_size: 0.7990, loss_rotsin: 0.2962, loss_centerness: 0.5781, loss_velo: 0.0607, loss_dir: 0.4910, loss_attr: 0.4207, loss: 4.4943, grad_norm: 7.8985
2021-08-17 19:13:37,836 - mmdet - INFO - Epoch [3][1150/2217] lr: 8.000e-03, eta: 12:06:41, time: 2.071, data_time: 0.055, memory: 20195, loss_cls: 0.2875, loss_offset: 0.6804, loss_depth: 0.8449, loss_size: 0.8520, loss_rotsin: 0.2922, loss_centerness: 0.5781, loss_velo: 0.0595, loss_dir: 0.4975, loss_attr: 0.4450, loss: 4.5371, grad_norm: 7.3875
2021-08-17 19:15:21,417 - mmdet - INFO - Epoch [3][1200/2217] lr: 8.000e-03, eta: 12:04:57, time: 2.072, data_time: 0.058, memory: 20195, loss_cls: 0.2837, loss_offset: 0.6760, loss_depth: 0.8318, loss_size: 0.8132, loss_rotsin: 0.2902, loss_centerness: 0.5784, loss_velo: 0.0607, loss_dir: 0.4913, loss_attr: 0.4209, loss: 4.4463, grad_norm: 6.8720
2021-08-17 19:17:05,640 - mmdet - INFO - Epoch [3][1250/2217] lr: 8.000e-03, eta: 12:03:15, time: 2.084, data_time: 0.055, memory: 20195, loss_cls: 0.2825, loss_offset: 0.6819, loss_depth: 0.8462, loss_size: 0.8117, loss_rotsin: 0.2842, loss_centerness: 0.5785, loss_velo: 0.0632, loss_dir: 0.4896, loss_attr: 0.4309, loss: 4.4687, grad_norm: 7.4031
2021-08-17 19:18:49,585 - mmdet - INFO - Epoch [3][1300/2217] lr: 8.000e-03, eta: 12:01:32, time: 2.079, data_time: 0.056, memory: 20195, loss_cls: 0.2827, loss_offset: 0.6728, loss_depth: 0.7764, loss_size: 0.8166, loss_rotsin: 0.2905, loss_centerness: 0.5780, loss_velo: 0.0571, loss_dir: 0.4862, loss_attr: 0.4351, loss: 4.3955, grad_norm: 6.5493
2021-08-17 19:20:33,655 - mmdet - INFO - Epoch [3][1350/2217] lr: 8.000e-03, eta: 11:59:49, time: 2.081, data_time: 0.056, memory: 20195, loss_cls: 0.2834, loss_offset: 0.6731, loss_depth: 0.8242, loss_size: 0.8011, loss_rotsin: 0.2849, loss_centerness: 0.5787, loss_velo: 0.0608, loss_dir: 0.4920, loss_attr: 0.4242, loss: 4.4224, grad_norm: 6.8017
2021-08-17 19:22:17,289 - mmdet - INFO - Epoch [3][1400/2217] lr: 8.000e-03, eta: 11:58:05, time: 2.073, data_time: 0.058, memory: 20195, loss_cls: 0.2806, loss_offset: 0.6738, loss_depth: 0.7912, loss_size: 0.8094, loss_rotsin: 0.2844, loss_centerness: 0.5776, loss_velo: 0.0589, loss_dir: 0.4898, loss_attr: 0.4260, loss: 4.3918, grad_norm: 6.5636
2021-08-17 19:24:01,086 - mmdet - INFO - Epoch [3][1450/2217] lr: 8.000e-03, eta: 11:56:22, time: 2.076, data_time: 0.061, memory: 20195, loss_cls: 0.2824, loss_offset: 0.6681, loss_depth: 0.8478, loss_size: 0.7811, loss_rotsin: 0.2803, loss_centerness: 0.5776, loss_velo: 0.0616, loss_dir: 0.4810, loss_attr: 0.4098, loss: 4.3898, grad_norm: 7.6743
2021-08-17 19:25:45,077 - mmdet - INFO - Epoch [3][1500/2217] lr: 8.000e-03, eta: 11:54:39, time: 2.080, data_time: 0.058, memory: 20195, loss_cls: 0.2802, loss_offset: 0.6666, loss_depth: 0.8630, loss_size: 0.7967, loss_rotsin: 0.2767, loss_centerness: 0.5774, loss_velo: 0.0604, loss_dir: 0.4776, loss_attr: 0.4249, loss: 4.4236, grad_norm: 7.8204
2021-08-17 19:27:29,154 - mmdet - INFO - Epoch [3][1550/2217] lr: 8.000e-03, eta: 11:52:57, time: 2.082, data_time: 0.063, memory: 20195, loss_cls: 0.2826, loss_offset: 0.6768, loss_depth: 0.9179, loss_size: 0.8059, loss_rotsin: 0.2855, loss_centerness: 0.5780, loss_velo: 0.0618, loss_dir: 0.4891, loss_attr: 0.4261, loss: 4.5239, grad_norm: 8.1137
2021-08-17 19:29:13,076 - mmdet - INFO - Epoch [3][1600/2217] lr: 8.000e-03, eta: 11:51:14, time: 2.078, data_time: 0.054, memory: 20195, loss_cls: 0.2818, loss_offset: 0.6807, loss_depth: 0.9702, loss_size: 0.8054, loss_rotsin: 0.2839, loss_centerness: 0.5785, loss_velo: 0.0585, loss_dir: 0.4861, loss_attr: 0.4120, loss: 4.5571, grad_norm: 9.1391
2021-08-17 19:30:57,161 - mmdet - INFO - Epoch [3][1650/2217] lr: 8.000e-03, eta: 11:49:31, time: 2.082, data_time: 0.052, memory: 20195, loss_cls: 0.2864, loss_offset: 0.6713, loss_depth: 0.8453, loss_size: 0.8372, loss_rotsin: 0.2862, loss_centerness: 0.5783, loss_velo: 0.0632, loss_dir: 0.4833, loss_attr: 0.4194, loss: 4.4706, grad_norm: 7.7240
2021-08-17 19:32:41,216 - mmdet - INFO - Epoch [3][1700/2217] lr: 8.000e-03, eta: 11:47:48, time: 2.081, data_time: 0.050, memory: 20195, loss_cls: 0.2826, loss_offset: 0.6691, loss_depth: 0.9196, loss_size: 0.8105, loss_rotsin: 0.2837, loss_centerness: 0.5776, loss_velo: 0.0641, loss_dir: 0.4808, loss_attr: 0.4250, loss: 4.5131, grad_norm: 8.4013
2021-08-17 19:34:24,837 - mmdet - INFO - Epoch [3][1750/2217] lr: 8.000e-03, eta: 11:46:04, time: 2.072, data_time: 0.053, memory: 20195, loss_cls: 0.2809, loss_offset: 0.6727, loss_depth: 0.8643, loss_size: 0.8363, loss_rotsin: 0.2840, loss_centerness: 0.5779, loss_velo: 0.0594, loss_dir: 0.4792, loss_attr: 0.4223, loss: 4.4771, grad_norm: 8.3630
2021-08-17 19:36:08,278 - mmdet - INFO - Epoch [3][1800/2217] lr: 8.000e-03, eta: 11:44:20, time: 2.069, data_time: 0.049, memory: 20195, loss_cls: 0.2760, loss_offset: 0.6621, loss_depth: 0.7748, loss_size: 0.7655, loss_rotsin: 0.2724, loss_centerness: 0.5776, loss_velo: 0.0587, loss_dir: 0.4780, loss_attr: 0.4151, loss: 4.2802, grad_norm: 6.8272
2021-08-17 19:37:51,531 - mmdet - INFO - Epoch [3][1850/2217] lr: 8.000e-03, eta: 11:42:34, time: 2.065, data_time: 0.051, memory: 20195, loss_cls: 0.2793, loss_offset: 0.6622, loss_depth: 0.8669, loss_size: 0.8048, loss_rotsin: 0.2786, loss_centerness: 0.5774, loss_velo: 0.0617, loss_dir: 0.4722, loss_attr: 0.4039, loss: 4.4070, grad_norm: 7.7574
2021-08-17 19:39:35,166 - mmdet - INFO - Epoch [3][1900/2217] lr: 8.000e-03, eta: 11:40:50, time: 2.073, data_time: 0.051, memory: 20195, loss_cls: 0.2784, loss_offset: 0.6714, loss_depth: 0.9125, loss_size: 0.7819, loss_rotsin: 0.2788, loss_centerness: 0.5777, loss_velo: 0.0668, loss_dir: 0.4780, loss_attr: 0.4268, loss: 4.4723, grad_norm: 8.4606
2021-08-17 19:41:18,651 - mmdet - INFO - Epoch [3][1950/2217] lr: 8.000e-03, eta: 11:39:06, time: 2.070, data_time: 0.053, memory: 20195, loss_cls: 0.2798, loss_offset: 0.6664, loss_depth: 0.8005, loss_size: 0.7992, loss_rotsin: 0.2735, loss_centerness: 0.5779, loss_velo: 0.0620, loss_dir: 0.4752, loss_attr: 0.4031, loss: 4.3378, grad_norm: 7.1388
2021-08-17 19:43:01,995 - mmdet - INFO - Epoch [3][2000/2217] lr: 8.000e-03, eta: 11:37:21, time: 2.067, data_time: 0.049, memory: 20195, loss_cls: 0.2813, loss_offset: 0.6664, loss_depth: 0.8082, loss_size: 0.8332, loss_rotsin: 0.2913, loss_centerness: 0.5778, loss_velo: 0.0616, loss_dir: 0.4842, loss_attr: 0.4172, loss: 4.4211, grad_norm: 7.2150
2021-08-17 19:44:45,244 - mmdet - INFO - Epoch [3][2050/2217] lr: 8.000e-03, eta: 11:35:36, time: 2.065, data_time: 0.050, memory: 20195, loss_cls: 0.2767, loss_offset: 0.6642, loss_depth: 0.8262, loss_size: 0.7844, loss_rotsin: 0.2757, loss_centerness: 0.5779, loss_velo: 0.0612, loss_dir: 0.4785, loss_attr: 0.3968, loss: 4.3415, grad_norm: 7.5860
2021-08-17 19:46:28,110 - mmdet - INFO - Epoch [3][2100/2217] lr: 8.000e-03, eta: 11:33:49, time: 2.057, data_time: 0.049, memory: 20195, loss_cls: 0.2801, loss_offset: 0.6678, loss_depth: 0.8621, loss_size: 0.7941, loss_rotsin: 0.2847, loss_centerness: 0.5774, loss_velo: 0.0613, loss_dir: 0.4794, loss_attr: 0.4016, loss: 4.4086, grad_norm: 7.8255
2021-08-17 19:48:11,096 - mmdet - INFO - Epoch [3][2150/2217] lr: 8.000e-03, eta: 11:32:03, time: 2.060, data_time: 0.050, memory: 20195, loss_cls: 0.2775, loss_offset: 0.6691, loss_depth: 0.8177, loss_size: 0.8016, loss_rotsin: 0.2771, loss_centerness: 0.5783, loss_velo: 0.0602, loss_dir: 0.4802, loss_attr: 0.4148, loss: 4.3765, grad_norm: 7.1729
2021-08-17 19:49:54,391 - mmdet - INFO - Epoch [3][2200/2217] lr: 8.000e-03, eta: 11:30:18, time: 2.066, data_time: 0.050, memory: 20195, loss_cls: 0.2773, loss_offset: 0.6602, loss_depth: 0.7820, loss_size: 0.7921, loss_rotsin: 0.2778, loss_centerness: 0.5772, loss_velo: 0.0636, loss_dir: 0.4637, loss_attr: 0.4110, loss: 4.3049, grad_norm: 6.5408
2021-08-17 19:50:29,794 - mmdet - INFO - Saving checkpoint at 3 epochs
2021-08-17 19:52:22,206 - mmdet - INFO - Epoch [4][50/2217] lr: 8.000e-03, eta: 11:26:37, time: 2.225, data_time: 0.215, memory: 20195, loss_cls: 0.2742, loss_offset: 0.6559, loss_depth: 0.7900, loss_size: 0.7802, loss_rotsin: 0.2821, loss_centerness: 0.5774, loss_velo: 0.0634, loss_dir: 0.4780, loss_attr: 0.3731, loss: 4.2743, grad_norm: 7.6433
2021-08-17 19:54:05,933 - mmdet - INFO - Epoch [4][100/2217] lr: 8.000e-03, eta: 11:24:54, time: 2.075, data_time: 0.058, memory: 20195, loss_cls: 0.2721, loss_offset: 0.6545, loss_depth: 0.7843, loss_size: 0.7381, loss_rotsin: 0.2729, loss_centerness: 0.5768, loss_velo: 0.0589, loss_dir: 0.4674, loss_attr: 0.3838, loss: 4.2087, grad_norm: 7.3986
2021-08-17 19:55:49,253 - mmdet - INFO - Epoch [4][150/2217] lr: 8.000e-03, eta: 11:23:10, time: 2.066, data_time: 0.061, memory: 20195, loss_cls: 0.2715, loss_offset: 0.6463, loss_depth: 0.8445, loss_size: 0.7533, loss_rotsin: 0.2666, loss_centerness: 0.5766, loss_velo: 0.0616, loss_dir: 0.4591, loss_attr: 0.3860, loss: 4.2655, grad_norm: 8.2192
2021-08-17 19:57:32,663 - mmdet - INFO - Epoch [4][200/2217] lr: 8.000e-03, eta: 11:21:27, time: 2.068, data_time: 0.054, memory: 20195, loss_cls: 0.2733, loss_offset: 0.6537, loss_depth: 0.8453, loss_size: 0.7487, loss_rotsin: 0.2696, loss_centerness: 0.5768, loss_velo: 0.0627, loss_dir: 0.4717, loss_attr: 0.3798, loss: 4.2817, grad_norm: 8.0599
2021-08-17 19:59:16,448 - mmdet - INFO - Epoch [4][250/2217] lr: 8.000e-03, eta: 11:19:44, time: 2.076, data_time: 0.063, memory: 20195, loss_cls: 0.2699, loss_offset: 0.6523, loss_depth: 0.8091, loss_size: 0.7590, loss_rotsin: 0.2651, loss_centerness: 0.5773, loss_velo: 0.0587, loss_dir: 0.4648, loss_attr: 0.3618, loss: 4.2180, grad_norm: 7.5018
2021-08-17 20:01:00,404 - mmdet - INFO - Epoch [4][300/2217] lr: 8.000e-03, eta: 11:18:02, time: 2.079, data_time: 0.058, memory: 20195, loss_cls: 0.2716, loss_offset: 0.6462, loss_depth: 0.7710, loss_size: 0.7413, loss_rotsin: 0.2713, loss_centerness: 0.5766, loss_velo: 0.0580, loss_dir: 0.4622, loss_attr: 0.3647, loss: 4.1629, grad_norm: 7.1193
2021-08-17 20:02:44,113 - mmdet - INFO - Epoch [4][350/2217] lr: 8.000e-03, eta: 11:16:19, time: 2.074, data_time: 0.057, memory: 20195, loss_cls: 0.2780, loss_offset: 0.6592, loss_depth: 0.7851, loss_size: 0.7606, loss_rotsin: 0.2743, loss_centerness: 0.5770, loss_velo: 0.0610, loss_dir: 0.4697, loss_attr: 0.3929, loss: 4.2577, grad_norm: 7.4313
2021-08-17 20:04:27,622 - mmdet - INFO - Epoch [4][400/2217] lr: 8.000e-03, eta: 11:14:35, time: 2.070, data_time: 0.055, memory: 20195, loss_cls: 0.2701, loss_offset: 0.6510, loss_depth: 0.8533, loss_size: 0.7641, loss_rotsin: 0.2656, loss_centerness: 0.5776, loss_velo: 0.0612, loss_dir: 0.4635, loss_attr: 0.3735, loss: 4.2798, grad_norm: 8.0951
2021-08-17 20:06:10,641 - mmdet - INFO - Epoch [4][450/2217] lr: 8.000e-03, eta: 11:12:51, time: 2.060, data_time: 0.058, memory: 20207, loss_cls: 0.2707, loss_offset: 0.6503, loss_depth: 0.8561, loss_size: 0.7480, loss_rotsin: 0.2690, loss_centerness: 0.5769, loss_velo: 0.0631, loss_dir: 0.4708, loss_attr: 0.3830, loss: 4.2878, grad_norm: 8.2676
2021-08-17 20:07:53,565 - mmdet - INFO - Epoch [4][500/2217] lr: 8.000e-03, eta: 11:11:05, time: 2.058, data_time: 0.061, memory: 20207, loss_cls: 0.2682, loss_offset: 0.6431, loss_depth: 0.8198, loss_size: 0.7379, loss_rotsin: 0.2647, loss_centerness: 0.5762, loss_velo: 0.0590, loss_dir: 0.4533, loss_attr: 0.3613, loss: 4.1835, grad_norm: 8.0668
2021-08-17 20:09:36,391 - mmdet - INFO - Epoch [4][550/2217] lr: 8.000e-03, eta: 11:09:20, time: 2.057, data_time: 0.058, memory: 20207, loss_cls: 0.2710, loss_offset: 0.6442, loss_depth: 0.9359, loss_size: 0.7353, loss_rotsin: 0.2646, loss_centerness: 0.5768, loss_velo: 0.0647, loss_dir: 0.4638, loss_attr: 0.3928, loss: 4.3491, grad_norm: 9.2217
2021-08-17 20:11:19,814 - mmdet - INFO - Epoch [4][600/2217] lr: 8.000e-03, eta: 11:07:37, time: 2.068, data_time: 0.057, memory: 20207, loss_cls: 0.2729, loss_offset: 0.6490, loss_depth: 0.9903, loss_size: 0.7804, loss_rotsin: 0.2644, loss_centerness: 0.5767, loss_velo: 0.0652, loss_dir: 0.4582, loss_attr: 0.3696, loss: 4.4267, grad_norm: 9.3677
2021-08-17 20:13:03,848 - mmdet - INFO - Epoch [4][650/2217] lr: 8.000e-03, eta: 11:05:54, time: 2.081, data_time: 0.055, memory: 20207, loss_cls: 0.2705, loss_offset: 0.6507, loss_depth: 0.7452, loss_size: 0.7248, loss_rotsin: 0.2692, loss_centerness: 0.5767, loss_velo: 0.0610, loss_dir: 0.4659, loss_attr: 0.3579, loss: 4.1219, grad_norm: 6.7115
2021-08-17 20:14:47,308 - mmdet - INFO - Epoch [4][700/2217] lr: 8.000e-03, eta: 11:04:11, time: 2.069, data_time: 0.059, memory: 20207, loss_cls: 0.2723, loss_offset: 0.6531, loss_depth: 0.7712, loss_size: 0.7454, loss_rotsin: 0.2698, loss_centerness: 0.5764, loss_velo: 0.0603, loss_dir: 0.4722, loss_attr: 0.3776, loss: 4.1984, grad_norm: 7.1166
2021-08-17 20:16:30,452 - mmdet - INFO - Epoch [4][750/2217] lr: 8.000e-03, eta: 11:02:26, time: 2.063, data_time: 0.057, memory: 20207, loss_cls: 0.2688, loss_offset: 0.6550, loss_depth: 0.8291, loss_size: 0.7500, loss_rotsin: 0.2650, loss_centerness: 0.5771, loss_velo: 0.0589, loss_dir: 0.4649, loss_attr: 0.3788, loss: 4.2475, grad_norm: 8.0460
2021-08-17 20:18:14,331 - mmdet - INFO - Epoch [4][800/2217] lr: 8.000e-03, eta: 11:00:44, time: 2.078, data_time: 0.059, memory: 20207, loss_cls: 0.2732, loss_offset: 0.6467, loss_depth: 0.7809, loss_size: 0.7590, loss_rotsin: 0.2685, loss_centerness: 0.5769, loss_velo: 0.0639, loss_dir: 0.4550, loss_attr: 0.3822, loss: 4.2063, grad_norm: 7.4797
2021-08-17 20:19:58,120 - mmdet - INFO - Epoch [4][850/2217] lr: 8.000e-03, eta: 10:59:01, time: 2.076, data_time: 0.058, memory: 20207, loss_cls: 0.2672, loss_offset: 0.6417, loss_depth: 0.7593, loss_size: 0.7320, loss_rotsin: 0.2663, loss_centerness: 0.5768, loss_velo: 0.0621, loss_dir: 0.4583, loss_attr: 0.3727, loss: 4.1364, grad_norm: 7.2181
2021-08-17 20:21:41,979 - mmdet - INFO - Epoch [4][900/2217] lr: 8.000e-03, eta: 10:57:19, time: 2.077, data_time: 0.061, memory: 20207, loss_cls: 0.2699, loss_offset: 0.6455, loss_depth: 0.7622, loss_size: 0.7431, loss_rotsin: 0.2679, loss_centerness: 0.5765, loss_velo: 0.0639, loss_dir: 0.4667, loss_attr: 0.3750, loss: 4.1706, grad_norm: 7.3150
2021-08-17 20:23:25,207 - mmdet - INFO - Epoch [4][950/2217] lr: 8.000e-03, eta: 10:55:34, time: 2.065, data_time: 0.058, memory: 20207, loss_cls: 0.2730, loss_offset: 0.6446, loss_depth: 0.8196, loss_size: 0.7593, loss_rotsin: 0.2701, loss_centerness: 0.5767, loss_velo: 0.0629, loss_dir: 0.4636, loss_attr: 0.3912, loss: 4.2610, grad_norm: 7.7099
2021-08-17 20:25:08,527 - mmdet - INFO - Epoch [4][1000/2217] lr: 8.000e-03, eta: 10:53:51, time: 2.066, data_time: 0.058, memory: 20207, loss_cls: 0.2662, loss_offset: 0.6385, loss_depth: 0.8227, loss_size: 0.7336, loss_rotsin: 0.2667, loss_centerness: 0.5769, loss_velo: 0.0643, loss_dir: 0.4617, loss_attr: 0.3712, loss: 4.2016, grad_norm: 8.1637
2021-08-17 20:26:51,950 - mmdet - INFO - Epoch [4][1050/2217] lr: 8.000e-03, eta: 10:52:07, time: 2.069, data_time: 0.059, memory: 20207, loss_cls: 0.2673, loss_offset: 0.6469, loss_depth: 0.9017, loss_size: 0.7484, loss_rotsin: 0.2628, loss_centerness: 0.5769, loss_velo: 0.0578, loss_dir: 0.4578, loss_attr: 0.3558, loss: 4.2756, grad_norm: 8.5107
2021-08-17 20:28:35,895 - mmdet - INFO - Epoch [4][1100/2217] lr: 8.000e-03, eta: 10:50:24, time: 2.079, data_time: 0.060, memory: 20207, loss_cls: 0.2702, loss_offset: 0.6476, loss_depth: 0.7761, loss_size: 0.7451, loss_rotsin: 0.2649, loss_centerness: 0.5771, loss_velo: 0.0573, loss_dir: 0.4650, loss_attr: 0.3765, loss: 4.1797, grad_norm: 7.0279
2021-08-17 20:30:20,030 - mmdet - INFO - Epoch [4][1150/2217] lr: 8.000e-03, eta: 10:48:42, time: 2.083, data_time: 0.059, memory: 20207, loss_cls: 0.2680, loss_offset: 0.6421, loss_depth: 0.7699, loss_size: 0.7279, loss_rotsin: 0.2648, loss_centerness: 0.5764, loss_velo: 0.0623, loss_dir: 0.4613, loss_attr: 0.3680, loss: 4.1407, grad_norm: 7.1376
2021-08-17 20:32:04,041 - mmdet - INFO - Epoch [4][1200/2217] lr: 8.000e-03, eta: 10:47:00, time: 2.080, data_time: 0.057, memory: 20207, loss_cls: 0.2660, loss_offset: 0.6404, loss_depth: 0.9143, loss_size: 0.7357, loss_rotsin: 0.2657, loss_centerness: 0.5769, loss_velo: 0.0619, loss_dir: 0.4473, loss_attr: 0.3535, loss: 4.2618, grad_norm: 8.9999
2021-08-17 20:33:47,969 - mmdet - INFO - Epoch [4][1250/2217] lr: 8.000e-03, eta: 10:45:18, time: 2.079, data_time: 0.058, memory: 20207, loss_cls: 0.2651, loss_offset: 0.6422, loss_depth: 0.8062, loss_size: 0.7459, loss_rotsin: 0.2576, loss_centerness: 0.5765, loss_velo: 0.0630, loss_dir: 0.4562, loss_attr: 0.3628, loss: 4.1756, grad_norm: 7.6964
2021-08-17 20:35:31,685 - mmdet - INFO - Epoch [4][1300/2217] lr: 8.000e-03, eta: 10:43:35, time: 2.074, data_time: 0.057, memory: 20207, loss_cls: 0.2665, loss_offset: 0.6404, loss_depth: 0.7270, loss_size: 0.7164, loss_rotsin: 0.2641, loss_centerness: 0.5765, loss_velo: 0.0628, loss_dir: 0.4538, loss_attr: 0.3530, loss: 4.0604, grad_norm: 6.6481
2021-08-17 20:37:14,992 - mmdet - INFO - Epoch [4][1350/2217] lr: 8.000e-03, eta: 10:41:51, time: 2.066, data_time: 0.058, memory: 20207, loss_cls: 0.2713, loss_offset: 0.6501, loss_depth: 0.8776, loss_size: 0.7305, loss_rotsin: 0.2614, loss_centerness: 0.5764, loss_velo: 0.0607, loss_dir: 0.4625, loss_attr: 0.3697, loss: 4.2602, grad_norm: 8.4465
2021-08-17 20:38:58,419 - mmdet - INFO - Epoch [4][1400/2217] lr: 8.000e-03, eta: 10:40:07, time: 2.069, data_time: 0.055, memory: 20207, loss_cls: 0.2647, loss_offset: 0.6353, loss_depth: 0.7909, loss_size: 0.7389, loss_rotsin: 0.2558, loss_centerness: 0.5762, loss_velo: 0.0615, loss_dir: 0.4443, loss_attr: 0.3599, loss: 4.1276, grad_norm: 7.4005
2021-08-17 20:40:41,762 - mmdet - INFO - Epoch [4][1450/2217] lr: 8.000e-03, eta: 10:38:23, time: 2.067, data_time: 0.059, memory: 20207, loss_cls: 0.2695, loss_offset: 0.6488, loss_depth: 0.9530, loss_size: 0.7553, loss_rotsin: 0.2606, loss_centerness: 0.5767, loss_velo: 0.0622, loss_dir: 0.4522, loss_attr: 0.3662, loss: 4.3444, grad_norm: 9.2421
2021-08-17 20:42:25,109 - mmdet - INFO - Epoch [4][1500/2217] lr: 8.000e-03, eta: 10:36:39, time: 2.067, data_time: 0.055, memory: 20207, loss_cls: 0.2692, loss_offset: 0.6345, loss_depth: 0.8042, loss_size: 0.7603, loss_rotsin: 0.2589, loss_centerness: 0.5761, loss_velo: 0.0617, loss_dir: 0.4433, loss_attr: 0.3667, loss: 4.1749, grad_norm: 7.3075
2021-08-17 20:44:08,205 - mmdet - INFO - Epoch [4][1550/2217] lr: 8.000e-03, eta: 10:34:55, time: 2.062, data_time: 0.055, memory: 20207, loss_cls: 0.2668, loss_offset: 0.6375, loss_depth: 0.7856, loss_size: 0.7381, loss_rotsin: 0.2562, loss_centerness: 0.5763, loss_velo: 0.0634, loss_dir: 0.4496, loss_attr: 0.3734, loss: 4.1469, grad_norm: 7.7639
2021-08-17 20:45:51,437 - mmdet - INFO - Epoch [4][1600/2217] lr: 8.000e-03, eta: 10:33:11, time: 2.065, data_time: 0.056, memory: 20207, loss_cls: 0.2707, loss_offset: 0.6431, loss_depth: 0.8747, loss_size: 0.7473, loss_rotsin: 0.2639, loss_centerness: 0.5771, loss_velo: 0.0628, loss_dir: 0.4516, loss_attr: 0.3854, loss: 4.2764, grad_norm: 8.6972
2021-08-17 20:47:35,011 - mmdet - INFO - Epoch [4][1650/2217] lr: 8.000e-03, eta: 10:31:27, time: 2.071, data_time: 0.057, memory: 20207, loss_cls: 0.2658, loss_offset: 0.6463, loss_depth: 0.7376, loss_size: 0.7349, loss_rotsin: 0.2609, loss_centerness: 0.5766, loss_velo: 0.0597, loss_dir: 0.4632, loss_attr: 0.3604, loss: 4.1052, grad_norm: 7.0037
2021-08-17 20:49:18,616 - mmdet - INFO - Epoch [4][1700/2217] lr: 8.000e-03, eta: 10:29:44, time: 2.072, data_time: 0.055, memory: 20207, loss_cls: 0.2647, loss_offset: 0.6404, loss_depth: 0.7803, loss_size: 0.7144, loss_rotsin: 0.2627, loss_centerness: 0.5764, loss_velo: 0.0611, loss_dir: 0.4538, loss_attr: 0.3566, loss: 4.1103, grad_norm: 7.5855
2021-08-17 20:51:02,006 - mmdet - INFO - Epoch [4][1750/2217] lr: 8.000e-03, eta: 10:28:00, time: 2.068, data_time: 0.055, memory: 20207, loss_cls: 0.2681, loss_offset: 0.6452, loss_depth: 0.8610, loss_size: 0.7417, loss_rotsin: 0.2676, loss_centerness: 0.5765, loss_velo: 0.0614, loss_dir: 0.4547, loss_attr: 0.3603, loss: 4.2364, grad_norm: 8.3062
2021-08-17 20:52:45,530 - mmdet - INFO - Epoch [4][1800/2217] lr: 8.000e-03, eta: 10:26:17, time: 2.070, data_time: 0.056, memory: 20207, loss_cls: 0.2670, loss_offset: 0.6406, loss_depth: 0.7854, loss_size: 0.7437, loss_rotsin: 0.2562, loss_centerness: 0.5767, loss_velo: 0.0609, loss_dir: 0.4462, loss_attr: 0.3649, loss: 4.1416, grad_norm: 7.4874
2021-08-17 20:54:28,942 - mmdet - INFO - Epoch [4][1850/2217] lr: 8.000e-03, eta: 10:24:33, time: 2.068, data_time: 0.056, memory: 20207, loss_cls: 0.2615, loss_offset: 0.6360, loss_depth: 0.7552, loss_size: 0.7192, loss_rotsin: 0.2634, loss_centerness: 0.5762, loss_velo: 0.0595, loss_dir: 0.4555, loss_attr: 0.3489, loss: 4.0755, grad_norm: 6.9486
2021-08-17 20:56:12,283 - mmdet - INFO - Epoch [4][1900/2217] lr: 8.000e-03, eta: 10:22:49, time: 2.067, data_time: 0.055, memory: 20207, loss_cls: 0.2633, loss_offset: 0.6347, loss_depth: 0.7559, loss_size: 0.7233, loss_rotsin: 0.2553, loss_centerness: 0.5759, loss_velo: 0.0596, loss_dir: 0.4463, loss_attr: 0.3430, loss: 4.0574, grad_norm: 7.3567
2021-08-17 20:57:55,697 - mmdet - INFO - Epoch [4][1950/2217] lr: 8.000e-03, eta: 10:21:06, time: 2.068, data_time: 0.056, memory: 20207, loss_cls: 0.2628, loss_offset: 0.6368, loss_depth: 0.8389, loss_size: 0.7272, loss_rotsin: 0.2574, loss_centerness: 0.5763, loss_velo: 0.0602, loss_dir: 0.4523, loss_attr: 0.3412, loss: 4.1530, grad_norm: 8.6186
2021-08-17 20:59:39,192 - mmdet - INFO - Epoch [4][2000/2217] lr: 8.000e-03, eta: 10:19:22, time: 2.070, data_time: 0.055, memory: 20207, loss_cls: 0.2621, loss_offset: 0.6358, loss_depth: 0.9443, loss_size: 0.7130, loss_rotsin: 0.2596, loss_centerness: 0.5765, loss_velo: 0.0596, loss_dir: 0.4499, loss_attr: 0.3458, loss: 4.2465, grad_norm: 9.1642
2021-08-17 21:01:22,527 - mmdet - INFO - Epoch [4][2050/2217] lr: 8.000e-03, eta: 10:17:38, time: 2.067, data_time: 0.060, memory: 20207, loss_cls: 0.2687, loss_offset: 0.6378, loss_depth: 0.7189, loss_size: 0.7333, loss_rotsin: 0.2552, loss_centerness: 0.5765, loss_velo: 0.0595, loss_dir: 0.4450, loss_attr: 0.3562, loss: 4.0511, grad_norm: 6.8887
2021-08-17 21:03:05,887 - mmdet - INFO - Epoch [4][2100/2217] lr: 8.000e-03, eta: 10:15:55, time: 2.067, data_time: 0.057, memory: 20207, loss_cls: 0.2619, loss_offset: 0.6358, loss_depth: 0.9136, loss_size: 0.7320, loss_rotsin: 0.2555, loss_centerness: 0.5764, loss_velo: 0.0594, loss_dir: 0.4503, loss_attr: 0.3569, loss: 4.2417, grad_norm: 8.9889
2021-08-17 21:04:49,468 - mmdet - INFO - Epoch [4][2150/2217] lr: 8.000e-03, eta: 10:14:11, time: 2.072, data_time: 0.060, memory: 20207, loss_cls: 0.2646, loss_offset: 0.6352, loss_depth: 0.8343, loss_size: 0.7471, loss_rotsin: 0.2596, loss_centerness: 0.5762, loss_velo: 0.0637, loss_dir: 0.4490, loss_attr: 0.3668, loss: 4.1963, grad_norm: 8.2010
2021-08-17 21:06:33,179 - mmdet - INFO - Epoch [4][2200/2217] lr: 8.000e-03, eta: 10:12:28, time: 2.074, data_time: 0.059, memory: 20207, loss_cls: 0.2618, loss_offset: 0.6297, loss_depth: 0.7211, loss_size: 0.7123, loss_rotsin: 0.2567, loss_centerness: 0.5757, loss_velo: 0.0631, loss_dir: 0.4473, loss_attr: 0.3505, loss: 4.0182, grad_norm: 6.6114
2021-08-17 21:07:08,887 - mmdet - INFO - Saving checkpoint at 4 epochs
2021-08-17 21:09:01,016 - mmdet - INFO - Epoch [5][50/2217] lr: 8.000e-03, eta: 10:09:15, time: 2.221, data_time: 0.208, memory: 20207, loss_cls: 0.2614, loss_offset: 0.6316, loss_depth: 0.7513, loss_size: 0.6905, loss_rotsin: 0.2567, loss_centerness: 0.5764, loss_velo: 0.0593, loss_dir: 0.4340, loss_attr: 0.3187, loss: 3.9799, grad_norm: 7.5919
2021-08-17 21:10:44,823 - mmdet - INFO - Epoch [5][100/2217] lr: 8.000e-03, eta: 10:07:32, time: 2.076, data_time: 0.060, memory: 20207, loss_cls: 0.2583, loss_offset: 0.6241, loss_depth: 0.7631, loss_size: 0.6857, loss_rotsin: 0.2523, loss_centerness: 0.5755, loss_velo: 0.0621, loss_dir: 0.4436, loss_attr: 0.3313, loss: 3.9962, grad_norm: 7.7925
2021-08-17 21:12:28,404 - mmdet - INFO - Epoch [5][150/2217] lr: 8.000e-03, eta: 10:05:49, time: 2.072, data_time: 0.055, memory: 20207, loss_cls: 0.2553, loss_offset: 0.6218, loss_depth: 0.7203, loss_size: 0.6806, loss_rotsin: 0.2471, loss_centerness: 0.5755, loss_velo: 0.0615, loss_dir: 0.4269, loss_attr: 0.3183, loss: 3.9074, grad_norm: 7.2159
2021-08-17 21:14:12,187 - mmdet - INFO - Epoch [5][200/2217] lr: 8.000e-03, eta: 10:04:07, time: 2.076, data_time: 0.055, memory: 20207, loss_cls: 0.2572, loss_offset: 0.6216, loss_depth: 0.7042, loss_size: 0.6731, loss_rotsin: 0.2526, loss_centerness: 0.5762, loss_velo: 0.0602, loss_dir: 0.4359, loss_attr: 0.3221, loss: 3.9033, grad_norm: 6.8727
2021-08-17 21:15:56,330 - mmdet - INFO - Epoch [5][250/2217] lr: 8.000e-03, eta: 10:02:25, time: 2.083, data_time: 0.058, memory: 20207, loss_cls: 0.2555, loss_offset: 0.6230, loss_depth: 0.7958, loss_size: 0.6726, loss_rotsin: 0.2470, loss_centerness: 0.5759, loss_velo: 0.0603, loss_dir: 0.4300, loss_attr: 0.3246, loss: 3.9845, grad_norm: 8.2331
2021-08-17 21:17:40,015 - mmdet - INFO - Epoch [5][300/2217] lr: 8.000e-03, eta: 10:00:42, time: 2.074, data_time: 0.056, memory: 20207, loss_cls: 0.2584, loss_offset: 0.6208, loss_depth: 0.7390, loss_size: 0.6857, loss_rotsin: 0.2477, loss_centerness: 0.5753, loss_velo: 0.0619, loss_dir: 0.4373, loss_attr: 0.3219, loss: 3.9480, grad_norm: 7.3325
2021-08-17 21:19:23,217 - mmdet - INFO - Epoch [5][350/2217] lr: 8.000e-03, eta: 9:58:59, time: 2.064, data_time: 0.054, memory: 20207, loss_cls: 0.2559, loss_offset: 0.6184, loss_depth: 0.6933, loss_size: 0.6907, loss_rotsin: 0.2494, loss_centerness: 0.5755, loss_velo: 0.0617, loss_dir: 0.4367, loss_attr: 0.3160, loss: 3.8976, grad_norm: 6.9338
2021-08-17 21:21:06,495 - mmdet - INFO - Epoch [5][400/2217] lr: 8.000e-03, eta: 9:57:15, time: 2.066, data_time: 0.053, memory: 20207, loss_cls: 0.2602, loss_offset: 0.6303, loss_depth: 0.7016, loss_size: 0.7095, loss_rotsin: 0.2485, loss_centerness: 0.5759, loss_velo: 0.0616, loss_dir: 0.4406, loss_attr: 0.3332, loss: 3.9614, grad_norm: 6.7018
2021-08-17 21:22:50,532 - mmdet - INFO - Epoch [5][450/2217] lr: 8.000e-03, eta: 9:55:33, time: 2.081, data_time: 0.053, memory: 20207, loss_cls: 0.2571, loss_offset: 0.6218, loss_depth: 0.7245, loss_size: 0.6950, loss_rotsin: 0.2500, loss_centerness: 0.5757, loss_velo: 0.0609, loss_dir: 0.4381, loss_attr: 0.3361, loss: 3.9592, grad_norm: 7.3200
2021-08-17 21:24:34,062 - mmdet - INFO - Epoch [5][500/2217] lr: 8.000e-03, eta: 9:53:50, time: 2.071, data_time: 0.056, memory: 20207, loss_cls: 0.2600, loss_offset: 0.6236, loss_depth: 0.7631, loss_size: 0.6949, loss_rotsin: 0.2463, loss_centerness: 0.5757, loss_velo: 0.0598, loss_dir: 0.4360, loss_attr: 0.3272, loss: 3.9865, grad_norm: 7.7831
2021-08-17 21:26:17,290 - mmdet - INFO - Epoch [5][550/2217] lr: 8.000e-03, eta: 9:52:06, time: 2.065, data_time: 0.053, memory: 20207, loss_cls: 0.2571, loss_offset: 0.6183, loss_depth: 0.9086, loss_size: 0.6889, loss_rotsin: 0.2485, loss_centerness: 0.5752, loss_velo: 0.0610, loss_dir: 0.4299, loss_attr: 0.3223, loss: 4.1098, grad_norm: 8.6072
2021-08-17 21:28:00,624 - mmdet - INFO - Epoch [5][600/2217] lr: 8.000e-03, eta: 9:50:23, time: 2.067, data_time: 0.052, memory: 20207, loss_cls: 0.2557, loss_offset: 0.6212, loss_depth: 0.7012, loss_size: 0.6785, loss_rotsin: 0.2500, loss_centerness: 0.5756, loss_velo: 0.0598, loss_dir: 0.4396, loss_attr: 0.3224, loss: 3.9040, grad_norm: 6.9331
2021-08-17 21:29:44,025 - mmdet - INFO - Epoch [5][650/2217] lr: 8.000e-03, eta: 9:48:40, time: 2.068, data_time: 0.050, memory: 20207, loss_cls: 0.2580, loss_offset: 0.6126, loss_depth: 0.7670, loss_size: 0.6825, loss_rotsin: 0.2437, loss_centerness: 0.5751, loss_velo: 0.0586, loss_dir: 0.4322, loss_attr: 0.3300, loss: 3.9597, grad_norm: 7.9231
2021-08-17 21:31:27,422 - mmdet - INFO - Epoch [5][700/2217] lr: 8.000e-03, eta: 9:46:56, time: 2.068, data_time: 0.053, memory: 20207, loss_cls: 0.2568, loss_offset: 0.6147, loss_depth: 0.8276, loss_size: 0.7011, loss_rotsin: 0.2492, loss_centerness: 0.5752, loss_velo: 0.0626, loss_dir: 0.4290, loss_attr: 0.3214, loss: 4.0377, grad_norm: 8.4367
2021-08-17 21:33:10,999 - mmdet - INFO - Epoch [5][750/2217] lr: 8.000e-03, eta: 9:45:13, time: 2.072, data_time: 0.055, memory: 20207, loss_cls: 0.2560, loss_offset: 0.6238, loss_depth: 0.8139, loss_size: 0.6891, loss_rotsin: 0.2476, loss_centerness: 0.5752, loss_velo: 0.0593, loss_dir: 0.4276, loss_attr: 0.3095, loss: 4.0022, grad_norm: 8.3117
2021-08-17 21:34:54,158 - mmdet - INFO - Epoch [5][800/2217] lr: 8.000e-03, eta: 9:43:30, time: 2.063, data_time: 0.053, memory: 20207, loss_cls: 0.2567, loss_offset: 0.6208, loss_depth: 0.7671, loss_size: 0.6702, loss_rotsin: 0.2513, loss_centerness: 0.5756, loss_velo: 0.0582, loss_dir: 0.4334, loss_attr: 0.3079, loss: 3.9413, grad_norm: 7.8415
2021-08-17 21:36:37,647 - mmdet - INFO - Epoch [5][850/2217] lr: 8.000e-03, eta: 9:41:46, time: 2.070, data_time: 0.052, memory: 20207, loss_cls: 0.2555, loss_offset: 0.6150, loss_depth: 0.7757, loss_size: 0.6934, loss_rotsin: 0.2451, loss_centerness: 0.5753, loss_velo: 0.0623, loss_dir: 0.4283, loss_attr: 0.3219, loss: 3.9723, grad_norm: 7.7927
2021-08-17 21:38:21,157 - mmdet - INFO - Epoch [5][900/2217] lr: 8.000e-03, eta: 9:40:03, time: 2.070, data_time: 0.053, memory: 20207, loss_cls: 0.2573, loss_offset: 0.6152, loss_depth: 0.8116, loss_size: 0.6941, loss_rotsin: 0.2492, loss_centerness: 0.5753, loss_velo: 0.0597, loss_dir: 0.4335, loss_attr: 0.3230, loss: 4.0189, grad_norm: 8.4716
2021-08-17 21:40:04,617 - mmdet - INFO - Epoch [5][950/2217] lr: 8.000e-03, eta: 9:38:20, time: 2.069, data_time: 0.054, memory: 20207, loss_cls: 0.2596, loss_offset: 0.6241, loss_depth: 0.7526, loss_size: 0.6927, loss_rotsin: 0.2527, loss_centerness: 0.5759, loss_velo: 0.0632, loss_dir: 0.4379, loss_attr: 0.3122, loss: 3.9710, grad_norm: 7.6224
2021-08-17 21:41:48,534 - mmdet - INFO - Epoch [5][1000/2217] lr: 8.000e-03, eta: 9:36:38, time: 2.078, data_time: 0.050, memory: 20207, loss_cls: 0.2562, loss_offset: 0.6193, loss_depth: 0.7464, loss_size: 0.7159, loss_rotsin: 0.2385, loss_centerness: 0.5751, loss_velo: 0.0617, loss_dir: 0.4261, loss_attr: 0.3093, loss: 3.9484, grad_norm: 7.3031
2021-08-17 21:43:31,656 - mmdet - INFO - Epoch [5][1050/2217] lr: 8.000e-03, eta: 9:34:54, time: 2.062, data_time: 0.053, memory: 20207, loss_cls: 0.2581, loss_offset: 0.6199, loss_depth: 0.8210, loss_size: 0.6949, loss_rotsin: 0.2490, loss_centerness: 0.5754, loss_velo: 0.0624, loss_dir: 0.4305, loss_attr: 0.3338, loss: 4.0449, grad_norm: 8.6767
2021-08-17 21:45:14,671 - mmdet - INFO - Epoch [5][1100/2217] lr: 8.000e-03, eta: 9:33:10, time: 2.060, data_time: 0.058, memory: 20207, loss_cls: 0.2549, loss_offset: 0.6256, loss_depth: 0.7491, loss_size: 0.6763, loss_rotsin: 0.2447, loss_centerness: 0.5762, loss_velo: 0.0612, loss_dir: 0.4333, loss_attr: 0.3291, loss: 3.9504, grad_norm: 6.9370
2021-08-17 21:46:57,739 - mmdet - INFO - Epoch [5][1150/2217] lr: 8.000e-03, eta: 9:31:26, time: 2.061, data_time: 0.053, memory: 20207, loss_cls: 0.2553, loss_offset: 0.6166, loss_depth: 0.7697, loss_size: 0.6740, loss_rotsin: 0.2443, loss_centerness: 0.5751, loss_velo: 0.0644, loss_dir: 0.4261, loss_attr: 0.3130, loss: 3.9386, grad_norm: 7.5960
2021-08-17 21:48:40,900 - mmdet - INFO - Epoch [5][1200/2217] lr: 8.000e-03, eta: 9:29:43, time: 2.063, data_time: 0.055, memory: 20207, loss_cls: 0.2567, loss_offset: 0.6131, loss_depth: 0.7013, loss_size: 0.6745, loss_rotsin: 0.2467, loss_centerness: 0.5751, loss_velo: 0.0613, loss_dir: 0.4256, loss_attr: 0.3218, loss: 3.8759, grad_norm: 7.0381
2021-08-17 21:50:24,122 - mmdet - INFO - Epoch [5][1250/2217] lr: 8.000e-03, eta: 9:27:59, time: 2.064, data_time: 0.054, memory: 20207, loss_cls: 0.2558, loss_offset: 0.6193, loss_depth: 0.7438, loss_size: 0.6825, loss_rotsin: 0.2452, loss_centerness: 0.5757, loss_velo: 0.0623, loss_dir: 0.4304, loss_attr: 0.3160, loss: 3.9309, grad_norm: 7.5107
2021-08-17 21:52:07,437 - mmdet - INFO - Epoch [5][1300/2217] lr: 8.000e-03, eta: 9:26:15, time: 2.066, data_time: 0.060, memory: 20207, loss_cls: 0.2547, loss_offset: 0.6212, loss_depth: 0.7203, loss_size: 0.7128, loss_rotsin: 0.2471, loss_centerness: 0.5752, loss_velo: 0.0619, loss_dir: 0.4304, loss_attr: 0.3059, loss: 3.9295, grad_norm: 7.3240
2021-08-17 21:53:50,577 - mmdet - INFO - Epoch [5][1350/2217] lr: 8.000e-03, eta: 9:24:32, time: 2.063, data_time: 0.053, memory: 20207, loss_cls: 0.2551, loss_offset: 0.6168, loss_depth: 0.7444, loss_size: 0.6765, loss_rotsin: 0.2381, loss_centerness: 0.5752, loss_velo: 0.0602, loss_dir: 0.4199, loss_attr: 0.3164, loss: 3.9028, grad_norm: 7.3446
2021-08-17 21:55:33,869 - mmdet - INFO - Epoch [5][1400/2217] lr: 8.000e-03, eta: 9:22:48, time: 2.066, data_time: 0.055, memory: 20207, loss_cls: 0.2542, loss_offset: 0.6153, loss_depth: 0.7299, loss_size: 0.6759, loss_rotsin: 0.2441, loss_centerness: 0.5748, loss_velo: 0.0619, loss_dir: 0.4226, loss_attr: 0.3091, loss: 3.8876, grad_norm: 7.4339
2021-08-17 21:57:17,668 - mmdet - INFO - Epoch [5][1450/2217] lr: 8.000e-03, eta: 9:21:06, time: 2.076, data_time: 0.051, memory: 20207, loss_cls: 0.2565, loss_offset: 0.6159, loss_depth: 0.6998, loss_size: 0.6779, loss_rotsin: 0.2430, loss_centerness: 0.5752, loss_velo: 0.0616, loss_dir: 0.4199, loss_attr: 0.3120, loss: 3.8617, grad_norm: 6.8513
2021-08-17 21:59:01,246 - mmdet - INFO - Epoch [5][1500/2217] lr: 8.000e-03, eta: 9:19:23, time: 2.072, data_time: 0.060, memory: 20207, loss_cls: 0.2530, loss_offset: 0.6059, loss_depth: 0.7346, loss_size: 0.6640, loss_rotsin: 0.2410, loss_centerness: 0.5748, loss_velo: 0.0599, loss_dir: 0.4179, loss_attr: 0.3191, loss: 3.8700, grad_norm: 7.7572
2021-08-17 22:00:44,132 - mmdet - INFO - Epoch [5][1550/2217] lr: 8.000e-03, eta: 9:17:39, time: 2.058, data_time: 0.052, memory: 20207, loss_cls: 0.2548, loss_offset: 0.6124, loss_depth: 0.7465, loss_size: 0.7001, loss_rotsin: 0.2420, loss_centerness: 0.5751, loss_velo: 0.0640, loss_dir: 0.4153, loss_attr: 0.3085, loss: 3.9187, grad_norm: 7.7791
2021-08-17 22:02:26,850 - mmdet - INFO - Epoch [5][1600/2217] lr: 8.000e-03, eta: 9:15:54, time: 2.054, data_time: 0.057, memory: 20207, loss_cls: 0.2582, loss_offset: 0.6166, loss_depth: 0.8712, loss_size: 0.6928, loss_rotsin: 0.2465, loss_centerness: 0.5755, loss_velo: 0.0637, loss_dir: 0.4206, loss_attr: 0.3270, loss: 4.0723, grad_norm: 8.8157
2021-08-17 22:04:11,002 - mmdet - INFO - Epoch [5][1650/2217] lr: 8.000e-03, eta: 9:14:12, time: 2.083, data_time: 0.059, memory: 20207, loss_cls: 0.2590, loss_offset: 0.6204, loss_depth: 0.7220, loss_size: 0.7107, loss_rotsin: 0.2493, loss_centerness: 0.5755, loss_velo: 0.0590, loss_dir: 0.4277, loss_attr: 0.3086, loss: 3.9321, grad_norm: 7.4236
2021-08-17 22:05:54,618 - mmdet - INFO - Epoch [5][1700/2217] lr: 8.000e-03, eta: 9:12:29, time: 2.072, data_time: 0.057, memory: 20207, loss_cls: 0.2507, loss_offset: 0.6092, loss_depth: 0.8738, loss_size: 0.6730, loss_rotsin: 0.2368, loss_centerness: 0.5750, loss_velo: 0.0617, loss_dir: 0.4212, loss_attr: 0.3097, loss: 4.0111, grad_norm: 8.5401
2021-08-17 22:07:37,970 - mmdet - INFO - Epoch [5][1750/2217] lr: 8.000e-03, eta: 9:10:46, time: 2.067, data_time: 0.059, memory: 20207, loss_cls: 0.2580, loss_offset: 0.6183, loss_depth: 0.7390, loss_size: 0.7049, loss_rotsin: 0.2434, loss_centerness: 0.5752, loss_velo: 0.0600, loss_dir: 0.4226, loss_attr: 0.3202, loss: 3.9418, grad_norm: 7.3749
2021-08-17 22:09:21,318 - mmdet - INFO - Epoch [5][1800/2217] lr: 8.000e-03, eta: 9:09:02, time: 2.067, data_time: 0.062, memory: 20207, loss_cls: 0.2537, loss_offset: 0.6172, loss_depth: 0.7291, loss_size: 0.6650, loss_rotsin: 0.2401, loss_centerness: 0.5756, loss_velo: 0.0625, loss_dir: 0.4131, loss_attr: 0.3106, loss: 3.8668, grad_norm: 7.3811
2021-08-17 22:11:04,670 - mmdet - INFO - Epoch [5][1850/2217] lr: 8.000e-03, eta: 9:07:19, time: 2.067, data_time: 0.060, memory: 20207, loss_cls: 0.2525, loss_offset: 0.6107, loss_depth: 0.7390, loss_size: 0.6807, loss_rotsin: 0.2404, loss_centerness: 0.5753, loss_velo: 0.0606, loss_dir: 0.4219, loss_attr: 0.3010, loss: 3.8821, grad_norm: 7.7842
2021-08-17 22:12:48,058 - mmdet - INFO - Epoch [5][1900/2217] lr: 8.000e-03, eta: 9:05:36, time: 2.068, data_time: 0.060, memory: 20207, loss_cls: 0.2549, loss_offset: 0.6048, loss_depth: 0.7388, loss_size: 0.6770, loss_rotsin: 0.2394, loss_centerness: 0.5749, loss_velo: 0.0639, loss_dir: 0.4283, loss_attr: 0.3155, loss: 3.8973, grad_norm: 7.6340
2021-08-17 22:14:31,339 - mmdet - INFO - Epoch [5][1950/2217] lr: 8.000e-03, eta: 9:03:52, time: 2.066, data_time: 0.061, memory: 20207, loss_cls: 0.2563, loss_offset: 0.6218, loss_depth: 0.8516, loss_size: 0.6761, loss_rotsin: 0.2429, loss_centerness: 0.5754, loss_velo: 0.0616, loss_dir: 0.4278, loss_attr: 0.3158, loss: 4.0293, grad_norm: 8.3685
2021-08-17 22:16:15,409 - mmdet - INFO - Epoch [5][2000/2217] lr: 8.000e-03, eta: 9:02:10, time: 2.081, data_time: 0.063, memory: 20207, loss_cls: 0.2540, loss_offset: 0.6131, loss_depth: 0.7994, loss_size: 0.6691, loss_rotsin: 0.2460, loss_centerness: 0.5752, loss_velo: 0.0590, loss_dir: 0.4231, loss_attr: 0.3006, loss: 3.9395, grad_norm: 8.3004
2021-08-17 22:17:59,261 - mmdet - INFO - Epoch [5][2050/2217] lr: 8.000e-03, eta: 9:00:27, time: 2.077, data_time: 0.063, memory: 20207, loss_cls: 0.2555, loss_offset: 0.6103, loss_depth: 0.7290, loss_size: 0.6812, loss_rotsin: 0.2361, loss_centerness: 0.5753, loss_velo: 0.0628, loss_dir: 0.4170, loss_attr: 0.3150, loss: 3.8823, grad_norm: 7.1267
2021-08-17 22:19:42,519 - mmdet - INFO - Epoch [5][2100/2217] lr: 8.000e-03, eta: 8:58:44, time: 2.065, data_time: 0.061, memory: 20207, loss_cls: 0.2505, loss_offset: 0.6121, loss_depth: 0.8051, loss_size: 0.6689, loss_rotsin: 0.2417, loss_centerness: 0.5750, loss_velo: 0.0602, loss_dir: 0.4220, loss_attr: 0.3185, loss: 3.9540, grad_norm: 8.3700
2021-08-17 22:21:26,153 - mmdet - INFO - Epoch [5][2150/2217] lr: 8.000e-03, eta: 8:57:01, time: 2.073, data_time: 0.060, memory: 20207, loss_cls: 0.2547, loss_offset: 0.6179, loss_depth: 0.7819, loss_size: 0.6739, loss_rotsin: 0.2447, loss_centerness: 0.5750, loss_velo: 0.0599, loss_dir: 0.4274, loss_attr: 0.3101, loss: 3.9456, grad_norm: 7.9634
2021-08-17 22:23:09,423 - mmdet - INFO - Epoch [5][2200/2217] lr: 8.000e-03, eta: 8:55:17, time: 2.065, data_time: 0.060, memory: 20207, loss_cls: 0.2500, loss_offset: 0.6017, loss_depth: 0.7225, loss_size: 0.6770, loss_rotsin: 0.2378, loss_centerness: 0.5746, loss_velo: 0.0584, loss_dir: 0.4178, loss_attr: 0.2928, loss: 3.8326, grad_norm: 7.6484
2021-08-17 22:23:45,232 - mmdet - INFO - Saving checkpoint at 5 epochs
2021-08-17 22:25:37,698 - mmdet - INFO - Epoch [6][50/2217] lr: 8.000e-03, eta: 8:52:21, time: 2.226, data_time: 0.212, memory: 20207, loss_cls: 0.2497, loss_offset: 0.6016, loss_depth: 0.6974, loss_size: 0.6435, loss_rotsin: 0.2340, loss_centerness: 0.5745, loss_velo: 0.0591, loss_dir: 0.4126, loss_attr: 0.2704, loss: 3.7427, grad_norm: 7.3213
2021-08-17 22:27:21,591 - mmdet - INFO - Epoch [6][100/2217] lr: 8.000e-03, eta: 8:50:39, time: 2.078, data_time: 0.053, memory: 20207, loss_cls: 0.2451, loss_offset: 0.5965, loss_depth: 0.6649, loss_size: 0.6450, loss_rotsin: 0.2322, loss_centerness: 0.5742, loss_velo: 0.0610, loss_dir: 0.3981, loss_attr: 0.2769, loss: 3.6940, grad_norm: 7.1718
2021-08-17 22:29:05,229 - mmdet - INFO - Epoch [6][150/2217] lr: 8.000e-03, eta: 8:48:56, time: 2.073, data_time: 0.052, memory: 20207, loss_cls: 0.2496, loss_offset: 0.6129, loss_depth: 0.8864, loss_size: 0.6404, loss_rotsin: 0.2343, loss_centerness: 0.5751, loss_velo: 0.0597, loss_dir: 0.4027, loss_attr: 0.2715, loss: 3.9326, grad_norm: 9.0685
2021-08-17 22:30:48,442 - mmdet - INFO - Epoch [6][200/2217] lr: 8.000e-03, eta: 8:47:13, time: 2.064, data_time: 0.053, memory: 20207, loss_cls: 0.2455, loss_offset: 0.5878, loss_depth: 0.8041, loss_size: 0.6342, loss_rotsin: 0.2259, loss_centerness: 0.5735, loss_velo: 0.0629, loss_dir: 0.3942, loss_attr: 0.2768, loss: 3.8049, grad_norm: 8.7452
2021-08-17 22:32:31,764 - mmdet - INFO - Epoch [6][250/2217] lr: 8.000e-03, eta: 8:45:29, time: 2.066, data_time: 0.056, memory: 20207, loss_cls: 0.2471, loss_offset: 0.5985, loss_depth: 0.6407, loss_size: 0.6487, loss_rotsin: 0.2349, loss_centerness: 0.5742, loss_velo: 0.0585, loss_dir: 0.4055, loss_attr: 0.2780, loss: 3.6862, grad_norm: 6.6877
2021-08-17 22:34:15,224 - mmdet - INFO - Epoch [6][300/2217] lr: 8.000e-03, eta: 8:43:46, time: 2.069, data_time: 0.050, memory: 20207, loss_cls: 0.2469, loss_offset: 0.5985, loss_depth: 0.6704, loss_size: 0.6188, loss_rotsin: 0.2284, loss_centerness: 0.5746, loss_velo: 0.0639, loss_dir: 0.4026, loss_attr: 0.2740, loss: 3.6782, grad_norm: 7.0854
2021-08-17 22:35:58,425 - mmdet - INFO - Epoch [6][350/2217] lr: 8.000e-03, eta: 8:42:03, time: 2.064, data_time: 0.052, memory: 20207, loss_cls: 0.2470, loss_offset: 0.5997, loss_depth: 0.6741, loss_size: 0.6546, loss_rotsin: 0.2462, loss_centerness: 0.5747, loss_velo: 0.0616, loss_dir: 0.4117, loss_attr: 0.2855, loss: 3.7551, grad_norm: 7.1258
2021-08-17 22:37:41,551 - mmdet - INFO - Epoch [6][400/2217] lr: 8.000e-03, eta: 8:40:20, time: 2.062, data_time: 0.054, memory: 20207, loss_cls: 0.2478, loss_offset: 0.6037, loss_depth: 0.7756, loss_size: 0.6547, loss_rotsin: 0.2345, loss_centerness: 0.5747, loss_velo: 0.0592, loss_dir: 0.4094, loss_attr: 0.2871, loss: 3.8466, grad_norm: 8.1887
2021-08-17 22:39:25,180 - mmdet - INFO - Epoch [6][450/2217] lr: 8.000e-03, eta: 8:38:37, time: 2.073, data_time: 0.054, memory: 20207, loss_cls: 0.2476, loss_offset: 0.6021, loss_depth: 0.7377, loss_size: 0.6574, loss_rotsin: 0.2316, loss_centerness: 0.5747, loss_velo: 0.0608, loss_dir: 0.4084, loss_attr: 0.2840, loss: 3.8043, grad_norm: 7.2589
2021-08-17 22:41:08,199 - mmdet - INFO - Epoch [6][500/2217] lr: 8.000e-03, eta: 8:36:53, time: 2.060, data_time: 0.051, memory: 20207, loss_cls: 0.2498, loss_offset: 0.5948, loss_depth: 0.7097, loss_size: 0.6590, loss_rotsin: 0.2315, loss_centerness: 0.5739, loss_velo: 0.0602, loss_dir: 0.4022, loss_attr: 0.2848, loss: 3.7660, grad_norm: 7.7938
2021-08-17 22:42:50,848 - mmdet - INFO - Epoch [6][550/2217] lr: 8.000e-03, eta: 8:35:09, time: 2.053, data_time: 0.051, memory: 20207, loss_cls: 0.2473, loss_offset: 0.6030, loss_depth: 0.7026, loss_size: 0.6570, loss_rotsin: 0.2343, loss_centerness: 0.5748, loss_velo: 0.0595, loss_dir: 0.4058, loss_attr: 0.2880, loss: 3.7724, grad_norm: 7.8172
2021-08-17 22:44:33,647 - mmdet - INFO - Epoch [6][600/2217] lr: 8.000e-03, eta: 8:33:26, time: 2.056, data_time: 0.051, memory: 20207, loss_cls: 0.2440, loss_offset: 0.5875, loss_depth: 0.7262, loss_size: 0.6388, loss_rotsin: 0.2275, loss_centerness: 0.5737, loss_velo: 0.0585, loss_dir: 0.3967, loss_attr: 0.2713, loss: 3.7241, grad_norm: 8.3041
2021-08-17 22:46:16,975 - mmdet - INFO - Epoch [6][650/2217] lr: 8.000e-03, eta: 8:31:42, time: 2.067, data_time: 0.055, memory: 20207, loss_cls: 0.2499, loss_offset: 0.6050, loss_depth: 0.7142, loss_size: 0.6305, loss_rotsin: 0.2377, loss_centerness: 0.5749, loss_velo: 0.0605, loss_dir: 0.4123, loss_attr: 0.2869, loss: 3.7719, grad_norm: 7.5328
2021-08-17 22:48:00,114 - mmdet - INFO - Epoch [6][700/2217] lr: 8.000e-03, eta: 8:29:59, time: 2.063, data_time: 0.053, memory: 20207, loss_cls: 0.2448, loss_offset: 0.5952, loss_depth: 0.7588, loss_size: 0.6245, loss_rotsin: 0.2291, loss_centerness: 0.5744, loss_velo: 0.0600, loss_dir: 0.3962, loss_attr: 0.2641, loss: 3.7470, grad_norm: 8.0191
2021-08-17 22:49:43,457 - mmdet - INFO - Epoch [6][750/2217] lr: 8.000e-03, eta: 8:28:16, time: 2.067, data_time: 0.052, memory: 20207, loss_cls: 0.2479, loss_offset: 0.6018, loss_depth: 0.7699, loss_size: 0.6529, loss_rotsin: 0.2308, loss_centerness: 0.5747, loss_velo: 0.0623, loss_dir: 0.4069, loss_attr: 0.2783, loss: 3.8255, grad_norm: 8.3545
2021-08-17 22:51:27,059 - mmdet - INFO - Epoch [6][800/2217] lr: 8.000e-03, eta: 8:26:33, time: 2.072, data_time: 0.056, memory: 20207, loss_cls: 0.2493, loss_offset: 0.6078, loss_depth: 0.8137, loss_size: 0.6484, loss_rotsin: 0.2373, loss_centerness: 0.5750, loss_velo: 0.0601, loss_dir: 0.4153, loss_attr: 0.2820, loss: 3.8890, grad_norm: 8.1815
2021-08-17 22:53:10,392 - mmdet - INFO - Epoch [6][850/2217] lr: 8.000e-03, eta: 8:24:50, time: 2.067, data_time: 0.055, memory: 20207, loss_cls: 0.2497, loss_offset: 0.6025, loss_depth: 0.7728, loss_size: 0.6552, loss_rotsin: 0.2372, loss_centerness: 0.5749, loss_velo: 0.0607, loss_dir: 0.4069, loss_attr: 0.2872, loss: 3.8470, grad_norm: 8.1289
2021-08-17 22:54:53,582 - mmdet - INFO - Epoch [6][900/2217] lr: 8.000e-03, eta: 8:23:07, time: 2.064, data_time: 0.052, memory: 20207, loss_cls: 0.2516, loss_offset: 0.6082, loss_depth: 0.7321, loss_size: 0.6524, loss_rotsin: 0.2361, loss_centerness: 0.5748, loss_velo: 0.0624, loss_dir: 0.4042, loss_attr: 0.2932, loss: 3.8151, grad_norm: 7.7053
2021-08-17 22:56:36,913 - mmdet - INFO - Epoch [6][950/2217] lr: 8.000e-03, eta: 8:21:24, time: 2.067, data_time: 0.056, memory: 20207, loss_cls: 0.2491, loss_offset: 0.6072, loss_depth: 0.6839, loss_size: 0.6319, loss_rotsin: 0.2355, loss_centerness: 0.5746, loss_velo: 0.0606, loss_dir: 0.4100, loss_attr: 0.2807, loss: 3.7334, grad_norm: 7.2767
2021-08-17 22:58:20,210 - mmdet - INFO - Epoch [6][1000/2217] lr: 8.000e-03, eta: 8:19:40, time: 2.066, data_time: 0.053, memory: 20207, loss_cls: 0.2491, loss_offset: 0.6070, loss_depth: 0.7216, loss_size: 0.6589, loss_rotsin: 0.2333, loss_centerness: 0.5750, loss_velo: 0.0588, loss_dir: 0.4050, loss_attr: 0.2877, loss: 3.7964, grad_norm: 7.8012
2021-08-17 23:00:03,699 - mmdet - INFO - Epoch [6][1050/2217] lr: 8.000e-03, eta: 8:17:57, time: 2.070, data_time: 0.053, memory: 20207, loss_cls: 0.2491, loss_offset: 0.5991, loss_depth: 0.7689, loss_size: 0.6650, loss_rotsin: 0.2332, loss_centerness: 0.5748, loss_velo: 0.0620, loss_dir: 0.4035, loss_attr: 0.2954, loss: 3.8510, grad_norm: 7.7292
2021-08-17 23:01:46,999 - mmdet - INFO - Epoch [6][1100/2217] lr: 8.000e-03, eta: 8:16:14, time: 2.066, data_time: 0.053, memory: 20207, loss_cls: 0.2497, loss_offset: 0.6005, loss_depth: 0.8304, loss_size: 0.6506, loss_rotsin: 0.2330, loss_centerness: 0.5744, loss_velo: 0.0623, loss_dir: 0.3930, loss_attr: 0.2909, loss: 3.8848, grad_norm: 8.7013
2021-08-17 23:03:29,771 - mmdet - INFO - Epoch [6][1150/2217] lr: 8.000e-03, eta: 8:14:30, time: 2.055, data_time: 0.055, memory: 20207, loss_cls: 0.2449, loss_offset: 0.5979, loss_depth: 0.7019, loss_size: 0.6227, loss_rotsin: 0.2366, loss_centerness: 0.5745, loss_velo: 0.0594, loss_dir: 0.4079, loss_attr: 0.2802, loss: 3.7260, grad_norm: 7.2742
2021-08-17 23:05:12,885 - mmdet - INFO - Epoch [6][1200/2217] lr: 8.000e-03, eta: 8:12:47, time: 2.062, data_time: 0.053, memory: 20207, loss_cls: 0.2466, loss_offset: 0.5918, loss_depth: 0.6703, loss_size: 0.6430, loss_rotsin: 0.2298, loss_centerness: 0.5741, loss_velo: 0.0613, loss_dir: 0.3991, loss_attr: 0.2862, loss: 3.7023, grad_norm: 7.1748
2021-08-17 23:06:55,943 - mmdet - INFO - Epoch [6][1250/2217] lr: 8.000e-03, eta: 8:11:04, time: 2.061, data_time: 0.054, memory: 20207, loss_cls: 0.2463, loss_offset: 0.5970, loss_depth: 0.9289, loss_size: 0.6494, loss_rotsin: 0.2353, loss_centerness: 0.5744, loss_velo: 0.0600, loss_dir: 0.4079, loss_attr: 0.2722, loss: 3.9714, grad_norm: 9.6323
2021-08-17 23:08:39,450 - mmdet - INFO - Epoch [6][1300/2217] lr: 8.000e-03, eta: 8:09:21, time: 2.070, data_time: 0.055, memory: 20207, loss_cls: 0.2510, loss_offset: 0.6011, loss_depth: 1.1282, loss_size: 0.6676, loss_rotsin: 0.2304, loss_centerness: 0.5744, loss_velo: 0.0582, loss_dir: 0.4037, loss_attr: 0.2972, loss: 4.2119, grad_norm: 10.7461
2021-08-17 23:10:22,521 - mmdet - INFO - Epoch [6][1350/2217] lr: 8.000e-03, eta: 8:07:37, time: 2.061, data_time: 0.057, memory: 20207, loss_cls: 0.2498, loss_offset: 0.6024, loss_depth: 0.7056, loss_size: 0.6561, loss_rotsin: 0.2331, loss_centerness: 0.5748, loss_velo: 0.0611, loss_dir: 0.4032, loss_attr: 0.2827, loss: 3.7687, grad_norm: 6.9600
2021-08-17 23:12:05,682 - mmdet - INFO - Epoch [6][1400/2217] lr: 8.000e-03, eta: 8:05:54, time: 2.063, data_time: 0.053, memory: 20207, loss_cls: 0.2482, loss_offset: 0.5996, loss_depth: 0.7950, loss_size: 0.6524, loss_rotsin: 0.2259, loss_centerness: 0.5744, loss_velo: 0.0641, loss_dir: 0.3937, loss_attr: 0.2835, loss: 3.8368, grad_norm: 8.7598
2021-08-17 23:13:48,674 - mmdet - INFO - Epoch [6][1450/2217] lr: 8.000e-03, eta: 8:04:10, time: 2.060, data_time: 0.058, memory: 20207, loss_cls: 0.2456, loss_offset: 0.5939, loss_depth: 0.8160, loss_size: 0.6433, loss_rotsin: 0.2293, loss_centerness: 0.5749, loss_velo: 0.0615, loss_dir: 0.3986, loss_attr: 0.2865, loss: 3.8496, grad_norm: 8.8222
2021-08-17 23:15:31,722 - mmdet - INFO - Epoch [6][1500/2217] lr: 8.000e-03, eta: 8:02:27, time: 2.061, data_time: 0.059, memory: 20207, loss_cls: 0.2492, loss_offset: 0.6077, loss_depth: 0.7471, loss_size: 0.6475, loss_rotsin: 0.2310, loss_centerness: 0.5749, loss_velo: 0.0618, loss_dir: 0.3990, loss_attr: 0.2721, loss: 3.7903, grad_norm: 8.0117
2021-08-17 23:17:14,932 - mmdet - INFO - Epoch [6][1550/2217] lr: 8.000e-03, eta: 8:00:44, time: 2.064, data_time: 0.059, memory: 20207, loss_cls: 0.2477, loss_offset: 0.5988, loss_depth: 0.7168, loss_size: 0.6320, loss_rotsin: 0.2313, loss_centerness: 0.5743, loss_velo: 0.0607, loss_dir: 0.4032, loss_attr: 0.2784, loss: 3.7433, grad_norm: 7.8099
2021-08-17 23:18:57,530 - mmdet - INFO - Epoch [6][1600/2217] lr: 8.000e-03, eta: 7:59:00, time: 2.052, data_time: 0.057, memory: 20207, loss_cls: 0.2481, loss_offset: 0.5991, loss_depth: 0.6925, loss_size: 0.6666, loss_rotsin: 0.2245, loss_centerness: 0.5745, loss_velo: 0.0604, loss_dir: 0.4005, loss_attr: 0.2742, loss: 3.7404, grad_norm: 7.2670
2021-08-17 23:20:40,396 - mmdet - INFO - Epoch [6][1650/2217] lr: 8.000e-03, eta: 7:57:16, time: 2.057, data_time: 0.058, memory: 20207, loss_cls: 0.2470, loss_offset: 0.5939, loss_depth: 0.7026, loss_size: 0.6461, loss_rotsin: 0.2220, loss_centerness: 0.5739, loss_velo: 0.0616, loss_dir: 0.3989, loss_attr: 0.2829, loss: 3.7289, grad_norm: 7.4769
2021-08-17 23:22:23,454 - mmdet - INFO - Epoch [6][1700/2217] lr: 8.000e-03, eta: 7:55:32, time: 2.061, data_time: 0.057, memory: 20207, loss_cls: 0.2464, loss_offset: 0.5987, loss_depth: 0.6557, loss_size: 0.6316, loss_rotsin: 0.2295, loss_centerness: 0.5744, loss_velo: 0.0598, loss_dir: 0.3935, loss_attr: 0.2851, loss: 3.6746, grad_norm: 6.8654
2021-08-17 23:24:06,307 - mmdet - INFO - Epoch [6][1750/2217] lr: 8.000e-03, eta: 7:53:49, time: 2.057, data_time: 0.057, memory: 20207, loss_cls: 0.2446, loss_offset: 0.5977, loss_depth: 0.8678, loss_size: 0.6438, loss_rotsin: 0.2336, loss_centerness: 0.5743, loss_velo: 0.0622, loss_dir: 0.4036, loss_attr: 0.2772, loss: 3.9050, grad_norm: 9.7189
2021-08-17 23:25:48,831 - mmdet - INFO - Epoch [6][1800/2217] lr: 8.000e-03, eta: 7:52:05, time: 2.050, data_time: 0.055, memory: 20207, loss_cls: 0.2418, loss_offset: 0.5939, loss_depth: 0.7639, loss_size: 0.6243, loss_rotsin: 0.2293, loss_centerness: 0.5741, loss_velo: 0.0588, loss_dir: 0.4012, loss_attr: 0.2734, loss: 3.7607, grad_norm: 8.3817
2021-08-17 23:27:31,747 - mmdet - INFO - Epoch [6][1850/2217] lr: 8.000e-03, eta: 7:50:21, time: 2.058, data_time: 0.058, memory: 20207, loss_cls: 0.2479, loss_offset: 0.6013, loss_depth: 0.8900, loss_size: 0.6511, loss_rotsin: 0.2246, loss_centerness: 0.5743, loss_velo: 0.0592, loss_dir: 0.3922, loss_attr: 0.2699, loss: 3.9104, grad_norm: 8.9822
2021-08-17 23:29:14,512 - mmdet - INFO - Epoch [6][1900/2217] lr: 8.000e-03, eta: 7:48:38, time: 2.055, data_time: 0.055, memory: 20207, loss_cls: 0.2436, loss_offset: 0.5947, loss_depth: 0.9929, loss_size: 0.6433, loss_rotsin: 0.2322, loss_centerness: 0.5738, loss_velo: 0.0586, loss_dir: 0.3987, loss_attr: 0.2697, loss: 4.0075, grad_norm: 9.1148
2021-08-17 23:30:57,725 - mmdet - INFO - Epoch [6][1950/2217] lr: 8.000e-03, eta: 7:46:54, time: 2.064, data_time: 0.057, memory: 20207, loss_cls: 0.2462, loss_offset: 0.5904, loss_depth: 0.6942, loss_size: 0.6305, loss_rotsin: 0.2280, loss_centerness: 0.5745, loss_velo: 0.0629, loss_dir: 0.3968, loss_attr: 0.2838, loss: 3.7072, grad_norm: 7.0711
2021-08-17 23:32:41,224 - mmdet - INFO - Epoch [6][2000/2217] lr: 8.000e-03, eta: 7:45:11, time: 2.070, data_time: 0.056, memory: 20207, loss_cls: 0.2462, loss_offset: 0.5988, loss_depth: 0.8052, loss_size: 0.6439, loss_rotsin: 0.2341, loss_centerness: 0.5745, loss_velo: 0.0596, loss_dir: 0.4040, loss_attr: 0.2865, loss: 3.8529, grad_norm: 8.5746
2021-08-17 23:34:24,156 - mmdet - INFO - Epoch [6][2050/2217] lr: 8.000e-03, eta: 7:43:28, time: 2.058, data_time: 0.055, memory: 20207, loss_cls: 0.2444, loss_offset: 0.5895, loss_depth: 0.7829, loss_size: 0.6411, loss_rotsin: 0.2258, loss_centerness: 0.5739, loss_velo: 0.0612, loss_dir: 0.3978, loss_attr: 0.2808, loss: 3.7973, grad_norm: 8.4111
2021-08-17 23:36:07,181 - mmdet - INFO - Epoch [6][2100/2217] lr: 8.000e-03, eta: 7:41:44, time: 2.061, data_time: 0.058, memory: 20207, loss_cls: 0.2458, loss_offset: 0.5921, loss_depth: 0.7921, loss_size: 0.6320, loss_rotsin: 0.2305, loss_centerness: 0.5741, loss_velo: 0.0611, loss_dir: 0.3968, loss_attr: 0.2750, loss: 3.7995, grad_norm: 8.2809
2021-08-17 23:37:50,356 - mmdet - INFO - Epoch [6][2150/2217] lr: 8.000e-03, eta: 7:40:01, time: 2.064, data_time: 0.056, memory: 20207, loss_cls: 0.2435, loss_offset: 0.5885, loss_depth: 0.7210, loss_size: 0.6456, loss_rotsin: 0.2305, loss_centerness: 0.5742, loss_velo: 0.0609, loss_dir: 0.3945, loss_attr: 0.2701, loss: 3.7286, grad_norm: 7.8756
2021-08-17 23:39:33,145 - mmdet - INFO - Epoch [6][2200/2217] lr: 8.000e-03, eta: 7:38:17, time: 2.056, data_time: 0.057, memory: 20207, loss_cls: 0.2456, loss_offset: 0.5869, loss_depth: 0.6499, loss_size: 0.6375, loss_rotsin: 0.2205, loss_centerness: 0.5738, loss_velo: 0.0569, loss_dir: 0.3864, loss_attr: 0.2654, loss: 3.6230, grad_norm: 7.0089
2021-08-17 23:40:08,444 - mmdet - INFO - Saving checkpoint at 6 epochs
2021-08-17 23:42:01,314 - mmdet - INFO - Epoch [7][50/2217] lr: 8.000e-03, eta: 7:35:33, time: 2.233, data_time: 0.213, memory: 20207, loss_cls: 0.2401, loss_offset: 0.5919, loss_depth: 0.6623, loss_size: 0.6046, loss_rotsin: 0.2225, loss_centerness: 0.5740, loss_velo: 0.0571, loss_dir: 0.3895, loss_attr: 0.2408, loss: 3.5828, grad_norm: 6.6963
2021-08-17 23:43:44,665 - mmdet - INFO - Epoch [7][100/2217] lr: 8.000e-03, eta: 7:33:50, time: 2.067, data_time: 0.058, memory: 20207, loss_cls: 0.2375, loss_offset: 0.5850, loss_depth: 0.6626, loss_size: 0.6121, loss_rotsin: 0.2168, loss_centerness: 0.5741, loss_velo: 0.0578, loss_dir: 0.3802, loss_attr: 0.2413, loss: 3.5673, grad_norm: 7.4642
2021-08-17 23:45:28,647 - mmdet - INFO - Epoch [7][150/2217] lr: 8.000e-03, eta: 7:32:07, time: 2.080, data_time: 0.059, memory: 20207, loss_cls: 0.2413, loss_offset: 0.5838, loss_depth: 0.6606, loss_size: 0.5997, loss_rotsin: 0.2199, loss_centerness: 0.5737, loss_velo: 0.0604, loss_dir: 0.3814, loss_attr: 0.2619, loss: 3.5827, grad_norm: 7.6644
2021-08-17 23:47:12,725 - mmdet - INFO - Epoch [7][200/2217] lr: 8.000e-03, eta: 7:30:25, time: 2.082, data_time: 0.058, memory: 20207, loss_cls: 0.2379, loss_offset: 0.5804, loss_depth: 0.6359, loss_size: 0.6011, loss_rotsin: 0.2255, loss_centerness: 0.5735, loss_velo: 0.0578, loss_dir: 0.3821, loss_attr: 0.2368, loss: 3.5310, grad_norm: 6.8887
2021-08-17 23:48:56,700 - mmdet - INFO - Epoch [7][250/2217] lr: 8.000e-03, eta: 7:28:43, time: 2.079, data_time: 0.066, memory: 20207, loss_cls: 0.2371, loss_offset: 0.5769, loss_depth: 0.6331, loss_size: 0.6043, loss_rotsin: 0.2164, loss_centerness: 0.5732, loss_velo: 0.0616, loss_dir: 0.3806, loss_attr: 0.2422, loss: 3.5253, grad_norm: 6.7780
2021-08-17 23:50:40,644 - mmdet - INFO - Epoch [7][300/2217] lr: 8.000e-03, eta: 7:27:00, time: 2.079, data_time: 0.061, memory: 20207, loss_cls: 0.2411, loss_offset: 0.5840, loss_depth: 0.7322, loss_size: 0.6106, loss_rotsin: 0.2226, loss_centerness: 0.5738, loss_velo: 0.0567, loss_dir: 0.3924, loss_attr: 0.2458, loss: 3.6591, grad_norm: 8.0946
2021-08-17 23:52:24,904 - mmdet - INFO - Epoch [7][350/2217] lr: 8.000e-03, eta: 7:25:18, time: 2.085, data_time: 0.061, memory: 20207, loss_cls: 0.2380, loss_offset: 0.5818, loss_depth: 0.6275, loss_size: 0.6008, loss_rotsin: 0.2249, loss_centerness: 0.5736, loss_velo: 0.0590, loss_dir: 0.3839, loss_attr: 0.2270, loss: 3.5164, grad_norm: 6.8150
2021-08-17 23:54:10,476 - mmdet - INFO - Epoch [7][400/2217] lr: 8.000e-03, eta: 7:23:38, time: 2.111, data_time: 0.060, memory: 20207, loss_cls: 0.2369, loss_offset: 0.5850, loss_depth: 0.8268, loss_size: 0.5906, loss_rotsin: 0.2221, loss_centerness: 0.5739, loss_velo: 0.0619, loss_dir: 0.3786, loss_attr: 0.2392, loss: 3.7150, grad_norm: 9.3075
2021-08-17 23:55:55,499 - mmdet - INFO - Epoch [7][450/2217] lr: 8.000e-03, eta: 7:21:56, time: 2.100, data_time: 0.061, memory: 20207, loss_cls: 0.2375, loss_offset: 0.5800, loss_depth: 0.7344, loss_size: 0.6141, loss_rotsin: 0.2291, loss_centerness: 0.5736, loss_velo: 0.0585, loss_dir: 0.3728, loss_attr: 0.2440, loss: 3.6441, grad_norm: 8.2477
2021-08-17 23:57:39,943 - mmdet - INFO - Epoch [7][500/2217] lr: 8.000e-03, eta: 7:20:14, time: 2.089, data_time: 0.058, memory: 20207, loss_cls: 0.2384, loss_offset: 0.5797, loss_depth: 0.7800, loss_size: 0.6151, loss_rotsin: 0.2132, loss_centerness: 0.5733, loss_velo: 0.0599, loss_dir: 0.3694, loss_attr: 0.2462, loss: 3.6753, grad_norm: 8.7755
2021-08-17 23:59:24,071 - mmdet - INFO - Epoch [7][550/2217] lr: 8.000e-03, eta: 7:18:32, time: 2.083, data_time: 0.056, memory: 20207, loss_cls: 0.2416, loss_offset: 0.5808, loss_depth: 0.6983, loss_size: 0.6012, loss_rotsin: 0.2256, loss_centerness: 0.5736, loss_velo: 0.0605, loss_dir: 0.3858, loss_attr: 0.2435, loss: 3.6110, grad_norm: 7.7279
2021-08-18 00:01:08,222 - mmdet - INFO - Epoch [7][600/2217] lr: 8.000e-03, eta: 7:16:50, time: 2.083, data_time: 0.055, memory: 20207, loss_cls: 0.2409, loss_offset: 0.5802, loss_depth: 0.8005, loss_size: 0.6223, loss_rotsin: 0.2244, loss_centerness: 0.5731, loss_velo: 0.0578, loss_dir: 0.3819, loss_attr: 0.2545, loss: 3.7355, grad_norm: 8.8275
2021-08-18 00:02:52,971 - mmdet - INFO - Epoch [7][650/2217] lr: 8.000e-03, eta: 7:15:08, time: 2.095, data_time: 0.058, memory: 20207, loss_cls: 0.2402, loss_offset: 0.5837, loss_depth: 0.6946, loss_size: 0.5982, loss_rotsin: 0.2226, loss_centerness: 0.5735, loss_velo: 0.0570, loss_dir: 0.3844, loss_attr: 0.2604, loss: 3.6145, grad_norm: 7.8428
2021-08-18 00:04:36,794 - mmdet - INFO - Epoch [7][700/2217] lr: 8.000e-03, eta: 7:13:25, time: 2.076, data_time: 0.056, memory: 20207, loss_cls: 0.2404, loss_offset: 0.5859, loss_depth: 0.6713, loss_size: 0.6197, loss_rotsin: 0.2224, loss_centerness: 0.5735, loss_velo: 0.0614, loss_dir: 0.3772, loss_attr: 0.2665, loss: 3.6183, grad_norm: 7.3818
2021-08-18 00:06:20,506 - mmdet - INFO - Epoch [7][750/2217] lr: 8.000e-03, eta: 7:11:43, time: 2.074, data_time: 0.056, memory: 20207, loss_cls: 0.2403, loss_offset: 0.5801, loss_depth: 0.6976, loss_size: 0.5994, loss_rotsin: 0.2195, loss_centerness: 0.5731, loss_velo: 0.0583, loss_dir: 0.3777, loss_attr: 0.2421, loss: 3.5880, grad_norm: 8.1078
2021-08-18 00:08:04,123 - mmdet - INFO - Epoch [7][800/2217] lr: 8.000e-03, eta: 7:10:00, time: 2.072, data_time: 0.053, memory: 20207, loss_cls: 0.2406, loss_offset: 0.5853, loss_depth: 0.7015, loss_size: 0.6196, loss_rotsin: 0.2241, loss_centerness: 0.5741, loss_velo: 0.0568, loss_dir: 0.3771, loss_attr: 0.2506, loss: 3.6298, grad_norm: 7.5838
2021-08-18 00:09:47,799 - mmdet - INFO - Epoch [7][850/2217] lr: 8.000e-03, eta: 7:08:17, time: 2.073, data_time: 0.057, memory: 20207, loss_cls: 0.2383, loss_offset: 0.5795, loss_depth: 0.6989, loss_size: 0.6040, loss_rotsin: 0.2192, loss_centerness: 0.5735, loss_velo: 0.0573, loss_dir: 0.3730, loss_attr: 0.2458, loss: 3.5894, grad_norm: 8.0547
2021-08-18 00:11:31,802 - mmdet - INFO - Epoch [7][900/2217] lr: 8.000e-03, eta: 7:06:35, time: 2.080, data_time: 0.056, memory: 20207, loss_cls: 0.2364, loss_offset: 0.5730, loss_depth: 0.6577, loss_size: 0.5858, loss_rotsin: 0.2162, loss_centerness: 0.5734, loss_velo: 0.0565, loss_dir: 0.3826, loss_attr: 0.2404, loss: 3.5221, grad_norm: 7.5146
2021-08-18 00:13:15,673 - mmdet - INFO - Epoch [7][950/2217] lr: 8.000e-03, eta: 7:04:52, time: 2.077, data_time: 0.055, memory: 20207, loss_cls: 0.2403, loss_offset: 0.5839, loss_depth: 0.6474, loss_size: 0.5915, loss_rotsin: 0.2216, loss_centerness: 0.5737, loss_velo: 0.0590, loss_dir: 0.3854, loss_attr: 0.2563, loss: 3.5591, grad_norm: 7.5188