-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmoca_simipu_kitti.txt
1525 lines (1497 loc) · 158 KB
/
moca_simipu_kitti.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
2021-07-11 15:13:29,443 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.7 (default, May 7 2020, 21:25:33) [GCC 7.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM2-32GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 10.1, V10.1.243
GCC: gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
PyTorch: 1.6.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 10.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
- CuDNN 7.6.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,
TorchVision: 0.7.0
OpenCV: 4.5.2
MMCV: 1.3.4
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMDetection: 2.11.0
MMSegmentation: 0.13.0
MMDetection3D: 0.13.0+c81aa4f
------------------------------------------------------------
2021-07-11 15:13:33,801 - mmdet - INFO - Distributed training: True
2021-07-11 15:13:38,093 - mmdet - INFO - Config:
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
model = dict(
type='DynamicMVXFasterRCNN',
img_backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='SyncBN', requires_grad=True),
norm_eval=False,
style='pytorch'),
img_neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
pts_voxel_layer=dict(
max_num_points=-1,
point_cloud_range=[0, -40, -3, 70.4, 40, 1],
voxel_size=[0.05, 0.05, 0.1],
max_voxels=(-1, -1)),
pts_voxel_encoder=dict(
type='DynamicVFE',
in_channels=4,
feat_channels=[64, 64],
with_distance=False,
voxel_size=[0.05, 0.05, 0.1],
with_cluster_center=True,
with_voxel_center=True,
point_cloud_range=[0, -40, -3, 70.4, 40, 1],
fusion_layer=dict(
type='PointFusion',
img_channels=256,
pts_channels=64,
mid_channels=128,
out_channels=128,
img_levels=[0, 1, 2, 3, 4],
align_corners=False,
activate_out=True,
fuse_out=False)),
pts_middle_encoder=dict(
type='SparseEncoder',
in_channels=128,
sparse_shape=[41, 1600, 1408],
order=('conv', 'norm', 'act')),
pts_backbone=dict(
type='SECOND',
in_channels=256,
layer_nums=[5, 5],
layer_strides=[1, 2],
out_channels=[128, 256]),
pts_neck=dict(
type='SECONDFPN',
in_channels=[128, 256],
upsample_strides=[1, 2],
out_channels=[256, 256]),
pts_bbox_head=dict(
type='Anchor3DHead',
num_classes=3,
in_channels=512,
feat_channels=512,
use_direction_classifier=True,
anchor_generator=dict(
type='Anchor3DRangeGenerator',
ranges=[[0, -40.0, -0.6, 70.4, 40.0, -0.6],
[0, -40.0, -0.6, 70.4, 40.0, -0.6],
[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
sizes=[[0.6, 0.8, 1.73], [0.6, 1.76, 1.73], [1.6, 3.9, 1.56]],
rotations=[0, 1.57],
reshape_out=False),
assigner_per_size=True,
diff_rad_by_sin=True,
assign_per_class=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=2.0),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)),
train_cfg=dict(
pts=dict(
assigner=[
dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.35,
neg_iou_thr=0.2,
min_pos_iou=0.2,
ignore_iof_thr=-1),
dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1)
],
allowed_border=0,
pos_weight=-1,
debug=False)),
test_cfg=dict(
pts=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50)))
dataset_type = 'KittiDataset'
data_root = '/nfs/lizhenyu1/kitti_det/public_datalist_14/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
img_norm_cfg = dict(
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
db_sampler = dict(
type='MMDataBaseSampler',
data_root='/nfs/lizhenyu1/kitti_det/public_datalist_14/',
info_path=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/kitti_dbinfos_train.pkl',
rate=1.0,
blending_type=None,
depth_consistent=True,
check_2D_collision=True,
collision_thr=[0, 0.3, 0.5, 0.7],
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)),
classes=['Pedestrian', 'Cyclist', 'Car'],
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6))
input_modality = dict(use_lidar=True, use_camera=True)
train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
with_bbox=True,
with_label=True),
dict(
type='ObjectSample',
db_sampler=dict(
type='MMDataBaseSampler',
data_root='/nfs/lizhenyu1/kitti_det/public_datalist_14/',
info_path=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/kitti_dbinfos_train.pkl',
rate=1.0,
blending_type=None,
depth_consistent=True,
check_2D_collision=True,
collision_thr=[0, 0.3, 0.5, 0.7],
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=10, Cyclist=10)),
classes=['Pedestrian', 'Cyclist', 'Car'],
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6)),
sample_2d=True),
dict(
type='Resize',
img_scale=[(640, 192), (2560, 768)],
multiscale_mode='range',
keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.2, 0.2, 0.2]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='PointsRangeFilter', point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='ObjectRangeFilter', point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(type='PointShuffle'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=['Pedestrian', 'Cyclist', 'Car']),
dict(
type='Collect3D',
keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1280, 384),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(type='Resize', multiscale_mode='value', keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1.0, 1.0],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='DefaultFormatBundle3D',
class_names=['Pedestrian', 'Cyclist', 'Car'],
with_label=False),
dict(type='Collect3D', keys=['points', 'img'])
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type='KittiDataset',
data_root='/nfs/lizhenyu1/kitti_det/public_datalist_14/',
ann_file=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/kitti_infos_train.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=[
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4),
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
with_bbox=True,
with_label=True),
dict(
type='ObjectSample',
db_sampler=dict(
type='MMDataBaseSampler',
data_root=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/',
info_path=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/kitti_dbinfos_train.pkl',
rate=1.0,
blending_type=None,
depth_consistent=True,
check_2D_collision=True,
collision_thr=[0, 0.3, 0.5, 0.7],
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(
Car=5, Pedestrian=10, Cyclist=10)),
classes=['Pedestrian', 'Cyclist', 'Car'],
sample_groups=dict(Car=12, Pedestrian=6, Cyclist=6)),
sample_2d=True),
dict(
type='Resize',
img_scale=[(640, 192), (2560, 768)],
multiscale_mode='range',
keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.2, 0.2, 0.2]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='ObjectRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(type='PointShuffle'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=['Pedestrian', 'Cyclist', 'Car']),
dict(
type='Collect3D',
keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d'])
],
modality=dict(use_lidar=True, use_camera=True),
classes=['Pedestrian', 'Cyclist', 'Car'],
test_mode=False)),
val=dict(
type='KittiDataset',
data_root='/nfs/lizhenyu1/kitti_det/public_datalist_14/',
ann_file=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/kitti_infos_val.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=[
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4),
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1280, 384),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='Resize',
multiscale_mode='value',
keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1.0, 1.0],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='DefaultFormatBundle3D',
class_names=['Pedestrian', 'Cyclist', 'Car'],
with_label=False),
dict(type='Collect3D', keys=['points', 'img'])
])
],
modality=dict(use_lidar=True, use_camera=True),
classes=['Pedestrian', 'Cyclist', 'Car'],
test_mode=True),
test=dict(
type='KittiDataset',
data_root='/nfs/lizhenyu1/kitti_det/public_datalist_14/',
ann_file=
'/nfs/lizhenyu1/kitti_det/public_datalist_14/kitti_infos_val.pkl',
split='training',
pts_prefix='velodyne_reduced',
pipeline=[
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4),
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1280, 384),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='Resize',
multiscale_mode='value',
keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1.0, 1.0],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='DefaultFormatBundle3D',
class_names=['Pedestrian', 'Cyclist', 'Car'],
with_label=False),
dict(type='Collect3D', keys=['points', 'img'])
])
],
modality=dict(use_lidar=True, use_camera=True),
classes=['Pedestrian', 'Cyclist', 'Car'],
test_mode=True))
optimizer = dict(
constructor='HybridOptimizerConstructor',
pts=dict(
type='AdamW',
lr=0.003,
betas=(0.95, 0.99),
weight_decay=0.01,
step_interval=1),
img=dict(
type='SGD',
lr=0.005,
momentum=0.9,
weight_decay=0.0001,
step_interval=1))
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=0.1,
min_lr_ratio=1e-05)
momentum_config = None
checkpoint_config = dict(interval=1)
log_config = dict(
interval=50,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
evaluation = dict(interval=1, start=30)
total_epochs = 40
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = 'nfs/lzy/cross_intro_moco_pointCenterRotate/downstream/kitti_pretrain_ep50_rp4'
load_from = 'nfs/lzy/cross_intro_moco_pointCenterRotate/pretrain_fix_moco_bugs/epoch_50.pth'
resume_from = None
workflow = [('train', 1)]
gpu_ids = range(0, 8)
2021-07-11 15:13:38,093 - mmdet - INFO - Set random seed to 0, deterministic: False
2021-07-11 15:13:38,980 - mmdet - INFO - Model:
DynamicMVXFasterRCNN(
(pts_voxel_layer): Voxelization(voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0, -40, -3, 70.4, 40, 1], max_num_points=-1, max_voxels=(-1, -1))
(pts_voxel_encoder): DynamicVFE(
(scatter): DynamicScatter(voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0, -40, -3, 70.4, 40, 1], average_points=True)
(vfe_layers): ModuleList(
(0): Sequential(
(0): Linear(in_features=10, out_features=64, bias=False)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): Sequential(
(0): Linear(in_features=128, out_features=64, bias=False)
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(vfe_scatter): DynamicScatter(voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0, -40, -3, 70.4, 40, 1], average_points=False)
(cluster_scatter): DynamicScatter(voxel_size=[0.05, 0.05, 0.1], point_cloud_range=[0, -40, -3, 70.4, 40, 1], average_points=True)
(fusion_layer): PointFusion(
(lateral_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(4): ConvModule(
(conv): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
(img_transform): Sequential(
(0): Linear(in_features=640, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
)
(pts_transform): Sequential(
(0): Linear(in_features=64, out_features=128, bias=True)
(1): BatchNorm1d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
)
)
)
(pts_middle_encoder): SparseEncoder(
(conv_input): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(16, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(encoder_layers): SparseSequential(
(encoder_layer1): SparseSequential(
(0): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(16, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(encoder_layer2): SparseSequential(
(0): SparseSequential(
(0): SparseConv3d()
(1): BatchNorm1d(32, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(32, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(2): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(32, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(encoder_layer3): SparseSequential(
(0): SparseSequential(
(0): SparseConv3d()
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(2): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(encoder_layer4): SparseSequential(
(0): SparseSequential(
(0): SparseConv3d()
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(2): SparseSequential(
(0): SubMConv3d()
(1): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
)
(conv_out): SparseSequential(
(0): SparseConv3d()
(1): BatchNorm1d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
(pts_backbone): SECOND(
(blocks): ModuleList(
(0): Sequential(
(0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
(9): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(10): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)
(12): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(13): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(14): ReLU(inplace=True)
(15): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(16): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(17): ReLU(inplace=True)
)
(1): Sequential(
(0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(7): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
(9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(10): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(13): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(14): ReLU(inplace=True)
(15): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(16): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(17): ReLU(inplace=True)
)
)
)
(pts_neck): SECONDFPN(
(deblocks): ModuleList(
(0): Sequential(
(0): ConvTranspose2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
(1): Sequential(
(0): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
)
)
)
(pts_bbox_head): Anchor3DHead(
(loss_cls): FocalLoss()
(loss_bbox): SmoothL1Loss()
(loss_dir): CrossEntropyLoss()
(conv_cls): Conv2d(512, 18, kernel_size=(1, 1), stride=(1, 1))
(conv_reg): Conv2d(512, 42, kernel_size=(1, 1), stride=(1, 1))
(conv_dir_cls): Conv2d(512, 12, kernel_size=(1, 1), stride=(1, 1))
)
(img_backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): ResLayer(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): SyncBatchNorm(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
)
(img_neck): FPN(
(lateral_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
)
)
(fpn_convs): ModuleList(
(0): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(1): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(2): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(3): ConvModule(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
)
)
)
2021-07-11 15:13:49,916 - mmdet - INFO - load checkpoint from nfs/lzy/cross_intro_moco_pointCenterRotate/pretrain_fix_moco_bugs/epoch_50.pth
2021-07-11 15:13:49,916 - mmdet - INFO - Use load_from_local loader
2021-07-11 15:13:51,664 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: queue, queue_ptr, pts_backbone_k.SA_modules.0.mlps.0.layer0.conv.weight, pts_backbone_k.SA_modules.0.mlps.0.layer0.conv.bias, pts_backbone_k.SA_modules.0.mlps.0.layer0.bn.weight, pts_backbone_k.SA_modules.0.mlps.0.layer0.bn.bias, pts_backbone_k.SA_modules.0.mlps.0.layer0.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.0.layer0.bn.running_var, pts_backbone_k.SA_modules.0.mlps.0.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.0.layer1.conv.weight, pts_backbone_k.SA_modules.0.mlps.0.layer1.conv.bias, pts_backbone_k.SA_modules.0.mlps.0.layer1.bn.weight, pts_backbone_k.SA_modules.0.mlps.0.layer1.bn.bias, pts_backbone_k.SA_modules.0.mlps.0.layer1.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.0.layer1.bn.running_var, pts_backbone_k.SA_modules.0.mlps.0.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.0.layer2.conv.weight, pts_backbone_k.SA_modules.0.mlps.0.layer2.conv.bias, pts_backbone_k.SA_modules.0.mlps.0.layer2.bn.weight, pts_backbone_k.SA_modules.0.mlps.0.layer2.bn.bias, pts_backbone_k.SA_modules.0.mlps.0.layer2.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.0.layer2.bn.running_var, pts_backbone_k.SA_modules.0.mlps.0.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.1.layer0.conv.weight, pts_backbone_k.SA_modules.0.mlps.1.layer0.conv.bias, pts_backbone_k.SA_modules.0.mlps.1.layer0.bn.weight, pts_backbone_k.SA_modules.0.mlps.1.layer0.bn.bias, pts_backbone_k.SA_modules.0.mlps.1.layer0.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.1.layer0.bn.running_var, pts_backbone_k.SA_modules.0.mlps.1.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.1.layer1.conv.weight, pts_backbone_k.SA_modules.0.mlps.1.layer1.conv.bias, pts_backbone_k.SA_modules.0.mlps.1.layer1.bn.weight, pts_backbone_k.SA_modules.0.mlps.1.layer1.bn.bias, pts_backbone_k.SA_modules.0.mlps.1.layer1.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.1.layer1.bn.running_var, pts_backbone_k.SA_modules.0.mlps.1.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.1.layer2.conv.weight, pts_backbone_k.SA_modules.0.mlps.1.layer2.conv.bias, pts_backbone_k.SA_modules.0.mlps.1.layer2.bn.weight, pts_backbone_k.SA_modules.0.mlps.1.layer2.bn.bias, pts_backbone_k.SA_modules.0.mlps.1.layer2.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.1.layer2.bn.running_var, pts_backbone_k.SA_modules.0.mlps.1.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.2.layer0.conv.weight, pts_backbone_k.SA_modules.0.mlps.2.layer0.conv.bias, pts_backbone_k.SA_modules.0.mlps.2.layer0.bn.weight, pts_backbone_k.SA_modules.0.mlps.2.layer0.bn.bias, pts_backbone_k.SA_modules.0.mlps.2.layer0.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.2.layer0.bn.running_var, pts_backbone_k.SA_modules.0.mlps.2.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.2.layer1.conv.weight, pts_backbone_k.SA_modules.0.mlps.2.layer1.conv.bias, pts_backbone_k.SA_modules.0.mlps.2.layer1.bn.weight, pts_backbone_k.SA_modules.0.mlps.2.layer1.bn.bias, pts_backbone_k.SA_modules.0.mlps.2.layer1.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.2.layer1.bn.running_var, pts_backbone_k.SA_modules.0.mlps.2.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.0.mlps.2.layer2.conv.weight, pts_backbone_k.SA_modules.0.mlps.2.layer2.conv.bias, pts_backbone_k.SA_modules.0.mlps.2.layer2.bn.weight, pts_backbone_k.SA_modules.0.mlps.2.layer2.bn.bias, pts_backbone_k.SA_modules.0.mlps.2.layer2.bn.running_mean, pts_backbone_k.SA_modules.0.mlps.2.layer2.bn.running_var, pts_backbone_k.SA_modules.0.mlps.2.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.0.layer0.conv.weight, pts_backbone_k.SA_modules.1.mlps.0.layer0.conv.bias, pts_backbone_k.SA_modules.1.mlps.0.layer0.bn.weight, pts_backbone_k.SA_modules.1.mlps.0.layer0.bn.bias, pts_backbone_k.SA_modules.1.mlps.0.layer0.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.0.layer0.bn.running_var, pts_backbone_k.SA_modules.1.mlps.0.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.0.layer1.conv.weight, pts_backbone_k.SA_modules.1.mlps.0.layer1.conv.bias, pts_backbone_k.SA_modules.1.mlps.0.layer1.bn.weight, pts_backbone_k.SA_modules.1.mlps.0.layer1.bn.bias, pts_backbone_k.SA_modules.1.mlps.0.layer1.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.0.layer1.bn.running_var, pts_backbone_k.SA_modules.1.mlps.0.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.0.layer2.conv.weight, pts_backbone_k.SA_modules.1.mlps.0.layer2.conv.bias, pts_backbone_k.SA_modules.1.mlps.0.layer2.bn.weight, pts_backbone_k.SA_modules.1.mlps.0.layer2.bn.bias, pts_backbone_k.SA_modules.1.mlps.0.layer2.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.0.layer2.bn.running_var, pts_backbone_k.SA_modules.1.mlps.0.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.1.layer0.conv.weight, pts_backbone_k.SA_modules.1.mlps.1.layer0.conv.bias, pts_backbone_k.SA_modules.1.mlps.1.layer0.bn.weight, pts_backbone_k.SA_modules.1.mlps.1.layer0.bn.bias, pts_backbone_k.SA_modules.1.mlps.1.layer0.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.1.layer0.bn.running_var, pts_backbone_k.SA_modules.1.mlps.1.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.1.layer1.conv.weight, pts_backbone_k.SA_modules.1.mlps.1.layer1.conv.bias, pts_backbone_k.SA_modules.1.mlps.1.layer1.bn.weight, pts_backbone_k.SA_modules.1.mlps.1.layer1.bn.bias, pts_backbone_k.SA_modules.1.mlps.1.layer1.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.1.layer1.bn.running_var, pts_backbone_k.SA_modules.1.mlps.1.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.1.layer2.conv.weight, pts_backbone_k.SA_modules.1.mlps.1.layer2.conv.bias, pts_backbone_k.SA_modules.1.mlps.1.layer2.bn.weight, pts_backbone_k.SA_modules.1.mlps.1.layer2.bn.bias, pts_backbone_k.SA_modules.1.mlps.1.layer2.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.1.layer2.bn.running_var, pts_backbone_k.SA_modules.1.mlps.1.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.2.layer0.conv.weight, pts_backbone_k.SA_modules.1.mlps.2.layer0.conv.bias, pts_backbone_k.SA_modules.1.mlps.2.layer0.bn.weight, pts_backbone_k.SA_modules.1.mlps.2.layer0.bn.bias, pts_backbone_k.SA_modules.1.mlps.2.layer0.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.2.layer0.bn.running_var, pts_backbone_k.SA_modules.1.mlps.2.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.2.layer1.conv.weight, pts_backbone_k.SA_modules.1.mlps.2.layer1.conv.bias, pts_backbone_k.SA_modules.1.mlps.2.layer1.bn.weight, pts_backbone_k.SA_modules.1.mlps.2.layer1.bn.bias, pts_backbone_k.SA_modules.1.mlps.2.layer1.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.2.layer1.bn.running_var, pts_backbone_k.SA_modules.1.mlps.2.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.1.mlps.2.layer2.conv.weight, pts_backbone_k.SA_modules.1.mlps.2.layer2.conv.bias, pts_backbone_k.SA_modules.1.mlps.2.layer2.bn.weight, pts_backbone_k.SA_modules.1.mlps.2.layer2.bn.bias, pts_backbone_k.SA_modules.1.mlps.2.layer2.bn.running_mean, pts_backbone_k.SA_modules.1.mlps.2.layer2.bn.running_var, pts_backbone_k.SA_modules.1.mlps.2.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.0.layer0.conv.weight, pts_backbone_k.SA_modules.2.mlps.0.layer0.conv.bias, pts_backbone_k.SA_modules.2.mlps.0.layer0.bn.weight, pts_backbone_k.SA_modules.2.mlps.0.layer0.bn.bias, pts_backbone_k.SA_modules.2.mlps.0.layer0.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.0.layer0.bn.running_var, pts_backbone_k.SA_modules.2.mlps.0.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.0.layer1.conv.weight, pts_backbone_k.SA_modules.2.mlps.0.layer1.conv.bias, pts_backbone_k.SA_modules.2.mlps.0.layer1.bn.weight, pts_backbone_k.SA_modules.2.mlps.0.layer1.bn.bias, pts_backbone_k.SA_modules.2.mlps.0.layer1.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.0.layer1.bn.running_var, pts_backbone_k.SA_modules.2.mlps.0.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.0.layer2.conv.weight, pts_backbone_k.SA_modules.2.mlps.0.layer2.conv.bias, pts_backbone_k.SA_modules.2.mlps.0.layer2.bn.weight, pts_backbone_k.SA_modules.2.mlps.0.layer2.bn.bias, pts_backbone_k.SA_modules.2.mlps.0.layer2.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.0.layer2.bn.running_var, pts_backbone_k.SA_modules.2.mlps.0.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.1.layer0.conv.weight, pts_backbone_k.SA_modules.2.mlps.1.layer0.conv.bias, pts_backbone_k.SA_modules.2.mlps.1.layer0.bn.weight, pts_backbone_k.SA_modules.2.mlps.1.layer0.bn.bias, pts_backbone_k.SA_modules.2.mlps.1.layer0.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.1.layer0.bn.running_var, pts_backbone_k.SA_modules.2.mlps.1.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.1.layer1.conv.weight, pts_backbone_k.SA_modules.2.mlps.1.layer1.conv.bias, pts_backbone_k.SA_modules.2.mlps.1.layer1.bn.weight, pts_backbone_k.SA_modules.2.mlps.1.layer1.bn.bias, pts_backbone_k.SA_modules.2.mlps.1.layer1.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.1.layer1.bn.running_var, pts_backbone_k.SA_modules.2.mlps.1.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.1.layer2.conv.weight, pts_backbone_k.SA_modules.2.mlps.1.layer2.conv.bias, pts_backbone_k.SA_modules.2.mlps.1.layer2.bn.weight, pts_backbone_k.SA_modules.2.mlps.1.layer2.bn.bias, pts_backbone_k.SA_modules.2.mlps.1.layer2.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.1.layer2.bn.running_var, pts_backbone_k.SA_modules.2.mlps.1.layer2.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.2.layer0.conv.weight, pts_backbone_k.SA_modules.2.mlps.2.layer0.conv.bias, pts_backbone_k.SA_modules.2.mlps.2.layer0.bn.weight, pts_backbone_k.SA_modules.2.mlps.2.layer0.bn.bias, pts_backbone_k.SA_modules.2.mlps.2.layer0.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.2.layer0.bn.running_var, pts_backbone_k.SA_modules.2.mlps.2.layer0.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.2.layer1.conv.weight, pts_backbone_k.SA_modules.2.mlps.2.layer1.conv.bias, pts_backbone_k.SA_modules.2.mlps.2.layer1.bn.weight, pts_backbone_k.SA_modules.2.mlps.2.layer1.bn.bias, pts_backbone_k.SA_modules.2.mlps.2.layer1.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.2.layer1.bn.running_var, pts_backbone_k.SA_modules.2.mlps.2.layer1.bn.num_batches_tracked, pts_backbone_k.SA_modules.2.mlps.2.layer2.conv.weight, pts_backbone_k.SA_modules.2.mlps.2.layer2.conv.bias, pts_backbone_k.SA_modules.2.mlps.2.layer2.bn.weight, pts_backbone_k.SA_modules.2.mlps.2.layer2.bn.bias, pts_backbone_k.SA_modules.2.mlps.2.layer2.bn.running_mean, pts_backbone_k.SA_modules.2.mlps.2.layer2.bn.running_var, pts_backbone_k.SA_modules.2.mlps.2.layer2.bn.num_batches_tracked, pts_backbone_k.aggregation_mlps.0.conv.weight, pts_backbone_k.aggregation_mlps.0.conv.bias, pts_backbone_k.aggregation_mlps.0.bn.weight, pts_backbone_k.aggregation_mlps.0.bn.bias, pts_backbone_k.aggregation_mlps.0.bn.running_mean, pts_backbone_k.aggregation_mlps.0.bn.running_var, pts_backbone_k.aggregation_mlps.0.bn.num_batches_tracked, pts_backbone_k.aggregation_mlps.1.conv.weight, pts_backbone_k.aggregation_mlps.1.conv.bias, pts_backbone_k.aggregation_mlps.1.bn.weight, pts_backbone_k.aggregation_mlps.1.bn.bias, pts_backbone_k.aggregation_mlps.1.bn.running_mean, pts_backbone_k.aggregation_mlps.1.bn.running_var, pts_backbone_k.aggregation_mlps.1.bn.num_batches_tracked, pts_backbone_k.aggregation_mlps.2.conv.weight, pts_backbone_k.aggregation_mlps.2.conv.bias, pts_backbone_k.aggregation_mlps.2.bn.weight, pts_backbone_k.aggregation_mlps.2.bn.bias, pts_backbone_k.aggregation_mlps.2.bn.running_mean, pts_backbone_k.aggregation_mlps.2.bn.running_var, pts_backbone_k.aggregation_mlps.2.bn.num_batches_tracked, mlp_cross_points.layer1.0.weight, mlp_cross_points.layer1.0.bias, mlp_cross_points.layer1.1.weight, mlp_cross_points.layer1.1.bias, mlp_cross_points.layer1.1.running_mean, mlp_cross_points.layer1.1.running_var, mlp_cross_points.layer1.1.num_batches_tracked, mlp_cross_points.layer2.0.weight, mlp_cross_points.layer2.0.bias, mlp_cross_points.layer2.1.weight, mlp_cross_points.layer2.1.bias, mlp_cross_points.layer2.1.running_mean, mlp_cross_points.layer2.1.running_var, mlp_cross_points.layer2.1.num_batches_tracked, mlp_cross_points.layer3.0.weight, mlp_cross_points.layer3.0.bias, mlp_cross_points.layer3.1.weight, mlp_cross_points.layer3.1.bias, mlp_cross_points.layer3.1.running_mean, mlp_cross_points.layer3.1.running_var, mlp_cross_points.layer3.1.num_batches_tracked, mlp_cross_img.layer1.0.weight, mlp_cross_img.layer1.0.bias, mlp_cross_img.layer1.1.weight, mlp_cross_img.layer1.1.bias, mlp_cross_img.layer1.1.running_mean, mlp_cross_img.layer1.1.running_var, mlp_cross_img.layer1.1.num_batches_tracked, mlp_cross_img.layer2.0.weight, mlp_cross_img.layer2.0.bias, mlp_cross_img.layer2.1.weight, mlp_cross_img.layer2.1.bias, mlp_cross_img.layer2.1.running_mean, mlp_cross_img.layer2.1.running_var, mlp_cross_img.layer2.1.num_batches_tracked, mlp_cross_img.layer3.0.weight, mlp_cross_img.layer3.0.bias, mlp_cross_img.layer3.1.weight, mlp_cross_img.layer3.1.bias, mlp_cross_img.layer3.1.running_mean, mlp_cross_img.layer3.1.running_var, mlp_cross_img.layer3.1.num_batches_tracked, mlp_intro_points.layer1.0.weight, mlp_intro_points.layer1.0.bias, mlp_intro_points.layer1.1.weight, mlp_intro_points.layer1.1.bias, mlp_intro_points.layer1.1.running_mean, mlp_intro_points.layer1.1.running_var, mlp_intro_points.layer1.1.num_batches_tracked, mlp_intro_points.layer2.0.weight, mlp_intro_points.layer2.0.bias, mlp_intro_points.layer2.1.weight, mlp_intro_points.layer2.1.bias, mlp_intro_points.layer2.1.running_mean, mlp_intro_points.layer2.1.running_var, mlp_intro_points.layer2.1.num_batches_tracked, mlp_intro_points.layer3.0.weight, mlp_intro_points.layer3.0.bias, mlp_intro_points.layer3.1.weight, mlp_intro_points.layer3.1.bias, mlp_intro_points.layer3.1.running_mean, mlp_intro_points.layer3.1.running_var, mlp_intro_points.layer3.1.num_batches_tracked, mlp_cross_img_pred.layer1.0.weight, mlp_cross_img_pred.layer1.0.bias, mlp_cross_img_pred.layer1.1.weight, mlp_cross_img_pred.layer1.1.bias, mlp_cross_img_pred.layer1.1.running_mean, mlp_cross_img_pred.layer1.1.running_var, mlp_cross_img_pred.layer1.1.num_batches_tracked, mlp_cross_img_pred.layer2.0.weight, mlp_cross_img_pred.layer2.0.bias, mlp_cross_img_pred.layer2.1.weight, mlp_cross_img_pred.layer2.1.bias, mlp_cross_img_pred.layer2.1.running_mean, mlp_cross_img_pred.layer2.1.running_var, mlp_cross_img_pred.layer2.1.num_batches_tracked, mlp_cross_img_pred.layer3.0.weight, mlp_cross_img_pred.layer3.0.bias, mlp_cross_img_pred.layer3.1.weight, mlp_cross_img_pred.layer3.1.bias, mlp_cross_img_pred.layer3.1.running_mean, mlp_cross_img_pred.layer3.1.running_var, mlp_cross_img_pred.layer3.1.num_batches_tracked, mlp_cross_pts_pred.layer1.0.weight, mlp_cross_pts_pred.layer1.0.bias, mlp_cross_pts_pred.layer1.1.weight, mlp_cross_pts_pred.layer1.1.bias, mlp_cross_pts_pred.layer1.1.running_mean, mlp_cross_pts_pred.layer1.1.running_var, mlp_cross_pts_pred.layer1.1.num_batches_tracked, mlp_cross_pts_pred.layer2.0.weight, mlp_cross_pts_pred.layer2.0.bias, mlp_cross_pts_pred.layer2.1.weight, mlp_cross_pts_pred.layer2.1.bias, mlp_cross_pts_pred.layer2.1.running_mean, mlp_cross_pts_pred.layer2.1.running_var, mlp_cross_pts_pred.layer2.1.num_batches_tracked, mlp_cross_pts_pred.layer3.0.weight, mlp_cross_pts_pred.layer3.0.bias, mlp_cross_pts_pred.layer3.1.weight, mlp_cross_pts_pred.layer3.1.bias, mlp_cross_pts_pred.layer3.1.running_mean, mlp_cross_pts_pred.layer3.1.running_var, mlp_cross_pts_pred.layer3.1.num_batches_tracked, img_conv1x1_1.weight, img_conv1x1_1.bias, img_conv1x1_2.weight, img_conv1x1_2.bias, pts_backbone.SA_modules.0.mlps.0.layer0.conv.weight, pts_backbone.SA_modules.0.mlps.0.layer0.conv.bias, pts_backbone.SA_modules.0.mlps.0.layer0.bn.weight, pts_backbone.SA_modules.0.mlps.0.layer0.bn.bias, pts_backbone.SA_modules.0.mlps.0.layer0.bn.running_mean, pts_backbone.SA_modules.0.mlps.0.layer0.bn.running_var, pts_backbone.SA_modules.0.mlps.0.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.0.layer1.conv.weight, pts_backbone.SA_modules.0.mlps.0.layer1.conv.bias, pts_backbone.SA_modules.0.mlps.0.layer1.bn.weight, pts_backbone.SA_modules.0.mlps.0.layer1.bn.bias, pts_backbone.SA_modules.0.mlps.0.layer1.bn.running_mean, pts_backbone.SA_modules.0.mlps.0.layer1.bn.running_var, pts_backbone.SA_modules.0.mlps.0.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.0.layer2.conv.weight, pts_backbone.SA_modules.0.mlps.0.layer2.conv.bias, pts_backbone.SA_modules.0.mlps.0.layer2.bn.weight, pts_backbone.SA_modules.0.mlps.0.layer2.bn.bias, pts_backbone.SA_modules.0.mlps.0.layer2.bn.running_mean, pts_backbone.SA_modules.0.mlps.0.layer2.bn.running_var, pts_backbone.SA_modules.0.mlps.0.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.1.layer0.conv.weight, pts_backbone.SA_modules.0.mlps.1.layer0.conv.bias, pts_backbone.SA_modules.0.mlps.1.layer0.bn.weight, pts_backbone.SA_modules.0.mlps.1.layer0.bn.bias, pts_backbone.SA_modules.0.mlps.1.layer0.bn.running_mean, pts_backbone.SA_modules.0.mlps.1.layer0.bn.running_var, pts_backbone.SA_modules.0.mlps.1.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.1.layer1.conv.weight, pts_backbone.SA_modules.0.mlps.1.layer1.conv.bias, pts_backbone.SA_modules.0.mlps.1.layer1.bn.weight, pts_backbone.SA_modules.0.mlps.1.layer1.bn.bias, pts_backbone.SA_modules.0.mlps.1.layer1.bn.running_mean, pts_backbone.SA_modules.0.mlps.1.layer1.bn.running_var, pts_backbone.SA_modules.0.mlps.1.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.1.layer2.conv.weight, pts_backbone.SA_modules.0.mlps.1.layer2.conv.bias, pts_backbone.SA_modules.0.mlps.1.layer2.bn.weight, pts_backbone.SA_modules.0.mlps.1.layer2.bn.bias, pts_backbone.SA_modules.0.mlps.1.layer2.bn.running_mean, pts_backbone.SA_modules.0.mlps.1.layer2.bn.running_var, pts_backbone.SA_modules.0.mlps.1.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.2.layer0.conv.weight, pts_backbone.SA_modules.0.mlps.2.layer0.conv.bias, pts_backbone.SA_modules.0.mlps.2.layer0.bn.weight, pts_backbone.SA_modules.0.mlps.2.layer0.bn.bias, pts_backbone.SA_modules.0.mlps.2.layer0.bn.running_mean, pts_backbone.SA_modules.0.mlps.2.layer0.bn.running_var, pts_backbone.SA_modules.0.mlps.2.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.2.layer1.conv.weight, pts_backbone.SA_modules.0.mlps.2.layer1.conv.bias, pts_backbone.SA_modules.0.mlps.2.layer1.bn.weight, pts_backbone.SA_modules.0.mlps.2.layer1.bn.bias, pts_backbone.SA_modules.0.mlps.2.layer1.bn.running_mean, pts_backbone.SA_modules.0.mlps.2.layer1.bn.running_var, pts_backbone.SA_modules.0.mlps.2.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.0.mlps.2.layer2.conv.weight, pts_backbone.SA_modules.0.mlps.2.layer2.conv.bias, pts_backbone.SA_modules.0.mlps.2.layer2.bn.weight, pts_backbone.SA_modules.0.mlps.2.layer2.bn.bias, pts_backbone.SA_modules.0.mlps.2.layer2.bn.running_mean, pts_backbone.SA_modules.0.mlps.2.layer2.bn.running_var, pts_backbone.SA_modules.0.mlps.2.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.0.layer0.conv.weight, pts_backbone.SA_modules.1.mlps.0.layer0.conv.bias, pts_backbone.SA_modules.1.mlps.0.layer0.bn.weight, pts_backbone.SA_modules.1.mlps.0.layer0.bn.bias, pts_backbone.SA_modules.1.mlps.0.layer0.bn.running_mean, pts_backbone.SA_modules.1.mlps.0.layer0.bn.running_var, pts_backbone.SA_modules.1.mlps.0.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.0.layer1.conv.weight, pts_backbone.SA_modules.1.mlps.0.layer1.conv.bias, pts_backbone.SA_modules.1.mlps.0.layer1.bn.weight, pts_backbone.SA_modules.1.mlps.0.layer1.bn.bias, pts_backbone.SA_modules.1.mlps.0.layer1.bn.running_mean, pts_backbone.SA_modules.1.mlps.0.layer1.bn.running_var, pts_backbone.SA_modules.1.mlps.0.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.0.layer2.conv.weight, pts_backbone.SA_modules.1.mlps.0.layer2.conv.bias, pts_backbone.SA_modules.1.mlps.0.layer2.bn.weight, pts_backbone.SA_modules.1.mlps.0.layer2.bn.bias, pts_backbone.SA_modules.1.mlps.0.layer2.bn.running_mean, pts_backbone.SA_modules.1.mlps.0.layer2.bn.running_var, pts_backbone.SA_modules.1.mlps.0.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.1.layer0.conv.weight, pts_backbone.SA_modules.1.mlps.1.layer0.conv.bias, pts_backbone.SA_modules.1.mlps.1.layer0.bn.weight, pts_backbone.SA_modules.1.mlps.1.layer0.bn.bias, pts_backbone.SA_modules.1.mlps.1.layer0.bn.running_mean, pts_backbone.SA_modules.1.mlps.1.layer0.bn.running_var, pts_backbone.SA_modules.1.mlps.1.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.1.layer1.conv.weight, pts_backbone.SA_modules.1.mlps.1.layer1.conv.bias, pts_backbone.SA_modules.1.mlps.1.layer1.bn.weight, pts_backbone.SA_modules.1.mlps.1.layer1.bn.bias, pts_backbone.SA_modules.1.mlps.1.layer1.bn.running_mean, pts_backbone.SA_modules.1.mlps.1.layer1.bn.running_var, pts_backbone.SA_modules.1.mlps.1.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.1.layer2.conv.weight, pts_backbone.SA_modules.1.mlps.1.layer2.conv.bias, pts_backbone.SA_modules.1.mlps.1.layer2.bn.weight, pts_backbone.SA_modules.1.mlps.1.layer2.bn.bias, pts_backbone.SA_modules.1.mlps.1.layer2.bn.running_mean, pts_backbone.SA_modules.1.mlps.1.layer2.bn.running_var, pts_backbone.SA_modules.1.mlps.1.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.2.layer0.conv.weight, pts_backbone.SA_modules.1.mlps.2.layer0.conv.bias, pts_backbone.SA_modules.1.mlps.2.layer0.bn.weight, pts_backbone.SA_modules.1.mlps.2.layer0.bn.bias, pts_backbone.SA_modules.1.mlps.2.layer0.bn.running_mean, pts_backbone.SA_modules.1.mlps.2.layer0.bn.running_var, pts_backbone.SA_modules.1.mlps.2.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.2.layer1.conv.weight, pts_backbone.SA_modules.1.mlps.2.layer1.conv.bias, pts_backbone.SA_modules.1.mlps.2.layer1.bn.weight, pts_backbone.SA_modules.1.mlps.2.layer1.bn.bias, pts_backbone.SA_modules.1.mlps.2.layer1.bn.running_mean, pts_backbone.SA_modules.1.mlps.2.layer1.bn.running_var, pts_backbone.SA_modules.1.mlps.2.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.1.mlps.2.layer2.conv.weight, pts_backbone.SA_modules.1.mlps.2.layer2.conv.bias, pts_backbone.SA_modules.1.mlps.2.layer2.bn.weight, pts_backbone.SA_modules.1.mlps.2.layer2.bn.bias, pts_backbone.SA_modules.1.mlps.2.layer2.bn.running_mean, pts_backbone.SA_modules.1.mlps.2.layer2.bn.running_var, pts_backbone.SA_modules.1.mlps.2.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.0.layer0.conv.weight, pts_backbone.SA_modules.2.mlps.0.layer0.conv.bias, pts_backbone.SA_modules.2.mlps.0.layer0.bn.weight, pts_backbone.SA_modules.2.mlps.0.layer0.bn.bias, pts_backbone.SA_modules.2.mlps.0.layer0.bn.running_mean, pts_backbone.SA_modules.2.mlps.0.layer0.bn.running_var, pts_backbone.SA_modules.2.mlps.0.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.0.layer1.conv.weight, pts_backbone.SA_modules.2.mlps.0.layer1.conv.bias, pts_backbone.SA_modules.2.mlps.0.layer1.bn.weight, pts_backbone.SA_modules.2.mlps.0.layer1.bn.bias, pts_backbone.SA_modules.2.mlps.0.layer1.bn.running_mean, pts_backbone.SA_modules.2.mlps.0.layer1.bn.running_var, pts_backbone.SA_modules.2.mlps.0.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.0.layer2.conv.weight, pts_backbone.SA_modules.2.mlps.0.layer2.conv.bias, pts_backbone.SA_modules.2.mlps.0.layer2.bn.weight, pts_backbone.SA_modules.2.mlps.0.layer2.bn.bias, pts_backbone.SA_modules.2.mlps.0.layer2.bn.running_mean, pts_backbone.SA_modules.2.mlps.0.layer2.bn.running_var, pts_backbone.SA_modules.2.mlps.0.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.1.layer0.conv.weight, pts_backbone.SA_modules.2.mlps.1.layer0.conv.bias, pts_backbone.SA_modules.2.mlps.1.layer0.bn.weight, pts_backbone.SA_modules.2.mlps.1.layer0.bn.bias, pts_backbone.SA_modules.2.mlps.1.layer0.bn.running_mean, pts_backbone.SA_modules.2.mlps.1.layer0.bn.running_var, pts_backbone.SA_modules.2.mlps.1.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.1.layer1.conv.weight, pts_backbone.SA_modules.2.mlps.1.layer1.conv.bias, pts_backbone.SA_modules.2.mlps.1.layer1.bn.weight, pts_backbone.SA_modules.2.mlps.1.layer1.bn.bias, pts_backbone.SA_modules.2.mlps.1.layer1.bn.running_mean, pts_backbone.SA_modules.2.mlps.1.layer1.bn.running_var, pts_backbone.SA_modules.2.mlps.1.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.1.layer2.conv.weight, pts_backbone.SA_modules.2.mlps.1.layer2.conv.bias, pts_backbone.SA_modules.2.mlps.1.layer2.bn.weight, pts_backbone.SA_modules.2.mlps.1.layer2.bn.bias, pts_backbone.SA_modules.2.mlps.1.layer2.bn.running_mean, pts_backbone.SA_modules.2.mlps.1.layer2.bn.running_var, pts_backbone.SA_modules.2.mlps.1.layer2.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.2.layer0.conv.weight, pts_backbone.SA_modules.2.mlps.2.layer0.conv.bias, pts_backbone.SA_modules.2.mlps.2.layer0.bn.weight, pts_backbone.SA_modules.2.mlps.2.layer0.bn.bias, pts_backbone.SA_modules.2.mlps.2.layer0.bn.running_mean, pts_backbone.SA_modules.2.mlps.2.layer0.bn.running_var, pts_backbone.SA_modules.2.mlps.2.layer0.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.2.layer1.conv.weight, pts_backbone.SA_modules.2.mlps.2.layer1.conv.bias, pts_backbone.SA_modules.2.mlps.2.layer1.bn.weight, pts_backbone.SA_modules.2.mlps.2.layer1.bn.bias, pts_backbone.SA_modules.2.mlps.2.layer1.bn.running_mean, pts_backbone.SA_modules.2.mlps.2.layer1.bn.running_var, pts_backbone.SA_modules.2.mlps.2.layer1.bn.num_batches_tracked, pts_backbone.SA_modules.2.mlps.2.layer2.conv.weight, pts_backbone.SA_modules.2.mlps.2.layer2.conv.bias, pts_backbone.SA_modules.2.mlps.2.layer2.bn.weight, pts_backbone.SA_modules.2.mlps.2.layer2.bn.bias, pts_backbone.SA_modules.2.mlps.2.layer2.bn.running_mean, pts_backbone.SA_modules.2.mlps.2.layer2.bn.running_var, pts_backbone.SA_modules.2.mlps.2.layer2.bn.num_batches_tracked, pts_backbone.aggregation_mlps.0.conv.weight, pts_backbone.aggregation_mlps.0.conv.bias, pts_backbone.aggregation_mlps.0.bn.weight, pts_backbone.aggregation_mlps.0.bn.bias, pts_backbone.aggregation_mlps.0.bn.running_mean, pts_backbone.aggregation_mlps.0.bn.running_var, pts_backbone.aggregation_mlps.0.bn.num_batches_tracked, pts_backbone.aggregation_mlps.1.conv.weight, pts_backbone.aggregation_mlps.1.conv.bias, pts_backbone.aggregation_mlps.1.bn.weight, pts_backbone.aggregation_mlps.1.bn.bias, pts_backbone.aggregation_mlps.1.bn.running_mean, pts_backbone.aggregation_mlps.1.bn.running_var, pts_backbone.aggregation_mlps.1.bn.num_batches_tracked, pts_backbone.aggregation_mlps.2.conv.weight, pts_backbone.aggregation_mlps.2.conv.bias, pts_backbone.aggregation_mlps.2.bn.weight, pts_backbone.aggregation_mlps.2.bn.bias, pts_backbone.aggregation_mlps.2.bn.running_mean, pts_backbone.aggregation_mlps.2.bn.running_var, pts_backbone.aggregation_mlps.2.bn.num_batches_tracked
missing keys in source state_dict: pts_voxel_encoder.vfe_layers.0.0.weight, pts_voxel_encoder.vfe_layers.0.1.weight, pts_voxel_encoder.vfe_layers.0.1.bias, pts_voxel_encoder.vfe_layers.0.1.running_mean, pts_voxel_encoder.vfe_layers.0.1.running_var, pts_voxel_encoder.vfe_layers.1.0.weight, pts_voxel_encoder.vfe_layers.1.1.weight, pts_voxel_encoder.vfe_layers.1.1.bias, pts_voxel_encoder.vfe_layers.1.1.running_mean, pts_voxel_encoder.vfe_layers.1.1.running_var, pts_voxel_encoder.fusion_layer.lateral_convs.0.conv.weight, pts_voxel_encoder.fusion_layer.lateral_convs.0.conv.bias, pts_voxel_encoder.fusion_layer.lateral_convs.1.conv.weight, pts_voxel_encoder.fusion_layer.lateral_convs.1.conv.bias, pts_voxel_encoder.fusion_layer.lateral_convs.2.conv.weight, pts_voxel_encoder.fusion_layer.lateral_convs.2.conv.bias, pts_voxel_encoder.fusion_layer.lateral_convs.3.conv.weight, pts_voxel_encoder.fusion_layer.lateral_convs.3.conv.bias, pts_voxel_encoder.fusion_layer.lateral_convs.4.conv.weight, pts_voxel_encoder.fusion_layer.lateral_convs.4.conv.bias, pts_voxel_encoder.fusion_layer.img_transform.0.weight, pts_voxel_encoder.fusion_layer.img_transform.0.bias, pts_voxel_encoder.fusion_layer.img_transform.1.weight, pts_voxel_encoder.fusion_layer.img_transform.1.bias, pts_voxel_encoder.fusion_layer.img_transform.1.running_mean, pts_voxel_encoder.fusion_layer.img_transform.1.running_var, pts_voxel_encoder.fusion_layer.pts_transform.0.weight, pts_voxel_encoder.fusion_layer.pts_transform.0.bias, pts_voxel_encoder.fusion_layer.pts_transform.1.weight, pts_voxel_encoder.fusion_layer.pts_transform.1.bias, pts_voxel_encoder.fusion_layer.pts_transform.1.running_mean, pts_voxel_encoder.fusion_layer.pts_transform.1.running_var, pts_middle_encoder.conv_input.0.weight, pts_middle_encoder.conv_input.1.weight, pts_middle_encoder.conv_input.1.bias, pts_middle_encoder.conv_input.1.running_mean, pts_middle_encoder.conv_input.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer1.0.0.weight, pts_middle_encoder.encoder_layers.encoder_layer1.0.1.weight, pts_middle_encoder.encoder_layers.encoder_layer1.0.1.bias, pts_middle_encoder.encoder_layers.encoder_layer1.0.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer1.0.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer2.0.0.weight, pts_middle_encoder.encoder_layers.encoder_layer2.0.1.weight, pts_middle_encoder.encoder_layers.encoder_layer2.0.1.bias, pts_middle_encoder.encoder_layers.encoder_layer2.0.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer2.0.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer2.1.0.weight, pts_middle_encoder.encoder_layers.encoder_layer2.1.1.weight, pts_middle_encoder.encoder_layers.encoder_layer2.1.1.bias, pts_middle_encoder.encoder_layers.encoder_layer2.1.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer2.1.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer2.2.0.weight, pts_middle_encoder.encoder_layers.encoder_layer2.2.1.weight, pts_middle_encoder.encoder_layers.encoder_layer2.2.1.bias, pts_middle_encoder.encoder_layers.encoder_layer2.2.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer2.2.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer3.0.0.weight, pts_middle_encoder.encoder_layers.encoder_layer3.0.1.weight, pts_middle_encoder.encoder_layers.encoder_layer3.0.1.bias, pts_middle_encoder.encoder_layers.encoder_layer3.0.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer3.0.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer3.1.0.weight, pts_middle_encoder.encoder_layers.encoder_layer3.1.1.weight, pts_middle_encoder.encoder_layers.encoder_layer3.1.1.bias, pts_middle_encoder.encoder_layers.encoder_layer3.1.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer3.1.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer3.2.0.weight, pts_middle_encoder.encoder_layers.encoder_layer3.2.1.weight, pts_middle_encoder.encoder_layers.encoder_layer3.2.1.bias, pts_middle_encoder.encoder_layers.encoder_layer3.2.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer3.2.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer4.0.0.weight, pts_middle_encoder.encoder_layers.encoder_layer4.0.1.weight, pts_middle_encoder.encoder_layers.encoder_layer4.0.1.bias, pts_middle_encoder.encoder_layers.encoder_layer4.0.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer4.0.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer4.1.0.weight, pts_middle_encoder.encoder_layers.encoder_layer4.1.1.weight, pts_middle_encoder.encoder_layers.encoder_layer4.1.1.bias, pts_middle_encoder.encoder_layers.encoder_layer4.1.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer4.1.1.running_var, pts_middle_encoder.encoder_layers.encoder_layer4.2.0.weight, pts_middle_encoder.encoder_layers.encoder_layer4.2.1.weight, pts_middle_encoder.encoder_layers.encoder_layer4.2.1.bias, pts_middle_encoder.encoder_layers.encoder_layer4.2.1.running_mean, pts_middle_encoder.encoder_layers.encoder_layer4.2.1.running_var, pts_middle_encoder.conv_out.0.weight, pts_middle_encoder.conv_out.1.weight, pts_middle_encoder.conv_out.1.bias, pts_middle_encoder.conv_out.1.running_mean, pts_middle_encoder.conv_out.1.running_var, pts_backbone.blocks.0.0.weight, pts_backbone.blocks.0.1.weight, pts_backbone.blocks.0.1.bias, pts_backbone.blocks.0.1.running_mean, pts_backbone.blocks.0.1.running_var, pts_backbone.blocks.0.3.weight, pts_backbone.blocks.0.4.weight, pts_backbone.blocks.0.4.bias, pts_backbone.blocks.0.4.running_mean, pts_backbone.blocks.0.4.running_var, pts_backbone.blocks.0.6.weight, pts_backbone.blocks.0.7.weight, pts_backbone.blocks.0.7.bias, pts_backbone.blocks.0.7.running_mean, pts_backbone.blocks.0.7.running_var, pts_backbone.blocks.0.9.weight, pts_backbone.blocks.0.10.weight, pts_backbone.blocks.0.10.bias, pts_backbone.blocks.0.10.running_mean, pts_backbone.blocks.0.10.running_var, pts_backbone.blocks.0.12.weight, pts_backbone.blocks.0.13.weight, pts_backbone.blocks.0.13.bias, pts_backbone.blocks.0.13.running_mean, pts_backbone.blocks.0.13.running_var, pts_backbone.blocks.0.15.weight, pts_backbone.blocks.0.16.weight, pts_backbone.blocks.0.16.bias, pts_backbone.blocks.0.16.running_mean, pts_backbone.blocks.0.16.running_var, pts_backbone.blocks.1.0.weight, pts_backbone.blocks.1.1.weight, pts_backbone.blocks.1.1.bias, pts_backbone.blocks.1.1.running_mean, pts_backbone.blocks.1.1.running_var, pts_backbone.blocks.1.3.weight, pts_backbone.blocks.1.4.weight, pts_backbone.blocks.1.4.bias, pts_backbone.blocks.1.4.running_mean, pts_backbone.blocks.1.4.running_var, pts_backbone.blocks.1.6.weight, pts_backbone.blocks.1.7.weight, pts_backbone.blocks.1.7.bias, pts_backbone.blocks.1.7.running_mean, pts_backbone.blocks.1.7.running_var, pts_backbone.blocks.1.9.weight, pts_backbone.blocks.1.10.weight, pts_backbone.blocks.1.10.bias, pts_backbone.blocks.1.10.running_mean, pts_backbone.blocks.1.10.running_var, pts_backbone.blocks.1.12.weight, pts_backbone.blocks.1.13.weight, pts_backbone.blocks.1.13.bias, pts_backbone.blocks.1.13.running_mean, pts_backbone.blocks.1.13.running_var, pts_backbone.blocks.1.15.weight, pts_backbone.blocks.1.16.weight, pts_backbone.blocks.1.16.bias, pts_backbone.blocks.1.16.running_mean, pts_backbone.blocks.1.16.running_var, pts_neck.deblocks.0.0.weight, pts_neck.deblocks.0.1.weight, pts_neck.deblocks.0.1.bias, pts_neck.deblocks.0.1.running_mean, pts_neck.deblocks.0.1.running_var, pts_neck.deblocks.1.0.weight, pts_neck.deblocks.1.1.weight, pts_neck.deblocks.1.1.bias, pts_neck.deblocks.1.1.running_mean, pts_neck.deblocks.1.1.running_var, pts_bbox_head.conv_cls.weight, pts_bbox_head.conv_cls.bias, pts_bbox_head.conv_reg.weight, pts_bbox_head.conv_reg.bias, pts_bbox_head.conv_dir_cls.weight, pts_bbox_head.conv_dir_cls.bias, img_neck.lateral_convs.0.conv.weight, img_neck.lateral_convs.0.conv.bias, img_neck.lateral_convs.1.conv.weight, img_neck.lateral_convs.1.conv.bias, img_neck.lateral_convs.2.conv.weight, img_neck.lateral_convs.2.conv.bias, img_neck.lateral_convs.3.conv.weight, img_neck.lateral_convs.3.conv.bias, img_neck.fpn_convs.0.conv.weight, img_neck.fpn_convs.0.conv.bias, img_neck.fpn_convs.1.conv.weight, img_neck.fpn_convs.1.conv.bias, img_neck.fpn_convs.2.conv.weight, img_neck.fpn_convs.2.conv.bias, img_neck.fpn_convs.3.conv.weight, img_neck.fpn_convs.3.conv.bias
2021-07-11 15:13:51,716 - mmdet - INFO - Start running, host: root@kitti-downstream-rp4, work_dir: /nfs/lizhenyu1/workspace/python_workspace/mmdetection3d/nfs/lzy/cross_intro_moco_pointCenterRotate/downstream/kitti_pretrain_ep50_rp4
2021-07-11 15:13:51,717 - mmdet - INFO - workflow: [('train', 1)], max: 40 epochs
2021-07-11 15:15:46,953 - mmdet - INFO - Epoch [1][50/232] lr: 4.323e-04, eta: 5:53:54, time: 2.301, data_time: 0.258, memory: 12989, loss_cls: 1.0330, loss_bbox: 1.7601, loss_dir: 0.1456, loss: 2.9387, grad_norm: 15.9746
2021-07-11 15:17:25,812 - mmdet - INFO - Epoch [1][100/232] lr: 5.673e-04, eta: 5:27:16, time: 1.978, data_time: 0.021, memory: 13220, loss_cls: 0.6284, loss_bbox: 1.3548, loss_dir: 0.1364, loss: 2.1196, grad_norm: 7.2180
2021-07-11 15:19:04,976 - mmdet - INFO - Epoch [1][150/232] lr: 7.023e-04, eta: 5:17:35, time: 1.983, data_time: 0.020, memory: 13355, loss_cls: 0.5082, loss_bbox: 1.1257, loss_dir: 0.1302, loss: 1.7641, grad_norm: 7.5062
2021-07-11 15:20:44,297 - mmdet - INFO - Epoch [1][200/232] lr: 8.373e-04, eta: 5:12:01, time: 1.986, data_time: 0.023, memory: 13355, loss_cls: 0.4517, loss_bbox: 1.0446, loss_dir: 0.1230, loss: 1.6193, grad_norm: 6.3970
2021-07-11 15:21:47,573 - mmdet - INFO - Saving checkpoint at 1 epochs
2021-07-11 15:23:39,968 - mmdet - INFO - Epoch [2][50/232] lr: 1.057e-03, eta: 4:38:17, time: 2.219, data_time: 0.260, memory: 13355, loss_cls: 0.3549, loss_bbox: 0.8913, loss_dir: 0.1124, loss: 1.3587, grad_norm: 6.4741
2021-07-11 15:25:18,377 - mmdet - INFO - Epoch [2][100/232] lr: 1.192e-03, eta: 4:39:16, time: 1.968, data_time: 0.021, memory: 13355, loss_cls: 0.3088, loss_bbox: 0.8166, loss_dir: 0.1065, loss: 1.2319, grad_norm: 6.0065
2021-07-11 15:26:57,382 - mmdet - INFO - Epoch [2][150/232] lr: 1.327e-03, eta: 4:39:47, time: 1.980, data_time: 0.021, memory: 13355, loss_cls: 0.2912, loss_bbox: 0.7990, loss_dir: 0.1035, loss: 1.1937, grad_norm: 5.9348
2021-07-11 15:28:36,720 - mmdet - INFO - Epoch [2][200/232] lr: 1.461e-03, eta: 4:39:55, time: 1.986, data_time: 0.022, memory: 13355, loss_cls: 0.2698, loss_bbox: 0.7659, loss_dir: 0.1024, loss: 1.1380, grad_norm: 4.9763
2021-07-11 15:29:40,138 - mmdet - INFO - Saving checkpoint at 2 epochs
2021-07-11 15:31:32,657 - mmdet - INFO - Epoch [3][50/232] lr: 1.675e-03, eta: 4:24:38, time: 2.221, data_time: 0.255, memory: 13355, loss_cls: 0.2348, loss_bbox: 0.7271, loss_dir: 0.0945, loss: 1.0563, grad_norm: 5.4995
2021-07-11 15:33:11,308 - mmdet - INFO - Epoch [3][100/232] lr: 1.809e-03, eta: 4:25:13, time: 1.973, data_time: 0.022, memory: 13355, loss_cls: 0.2203, loss_bbox: 0.7006, loss_dir: 0.0933, loss: 1.0142, grad_norm: 5.5415
2021-07-11 15:34:50,087 - mmdet - INFO - Epoch [3][150/232] lr: 1.943e-03, eta: 4:25:27, time: 1.976, data_time: 0.020, memory: 13355, loss_cls: 0.2173, loss_bbox: 0.7084, loss_dir: 0.0929, loss: 1.0187, grad_norm: 5.0554
2021-07-11 15:36:28,722 - mmdet - INFO - Epoch [3][200/232] lr: 2.077e-03, eta: 4:25:23, time: 1.972, data_time: 0.020, memory: 13355, loss_cls: 0.2103, loss_bbox: 0.6754, loss_dir: 0.0906, loss: 0.9763, grad_norm: 3.9328
2021-07-11 15:37:32,321 - mmdet - INFO - Saving checkpoint at 3 epochs
2021-07-11 15:39:24,167 - mmdet - INFO - Epoch [4][50/232] lr: 2.280e-03, eta: 4:15:03, time: 2.213, data_time: 0.251, memory: 13355, loss_cls: 0.1943, loss_bbox: 0.6661, loss_dir: 0.0866, loss: 0.9470, grad_norm: 4.4528
2021-07-11 15:41:03,451 - mmdet - INFO - Epoch [4][100/232] lr: 2.413e-03, eta: 4:15:16, time: 1.986, data_time: 0.021, memory: 13355, loss_cls: 0.1869, loss_bbox: 0.6484, loss_dir: 0.0856, loss: 0.9209, grad_norm: 3.5733
2021-07-11 15:42:42,159 - mmdet - INFO - Epoch [4][150/232] lr: 2.546e-03, eta: 4:15:10, time: 1.974, data_time: 0.019, memory: 13355, loss_cls: 0.1853, loss_bbox: 0.6419, loss_dir: 0.0866, loss: 0.9137, grad_norm: 3.3656
2021-07-11 15:44:21,199 - mmdet - INFO - Epoch [4][200/232] lr: 2.679e-03, eta: 4:14:57, time: 1.981, data_time: 0.021, memory: 13366, loss_cls: 0.1835, loss_bbox: 0.6254, loss_dir: 0.0849, loss: 0.8938, grad_norm: 3.2595
2021-07-11 15:45:24,675 - mmdet - INFO - Saving checkpoint at 4 epochs
2021-07-11 15:47:16,643 - mmdet - INFO - Epoch [5][50/232] lr: 2.866e-03, eta: 4:06:55, time: 2.209, data_time: 0.257, memory: 13366, loss_cls: 0.1823, loss_bbox: 0.6144, loss_dir: 0.0795, loss: 0.8762, grad_norm: 3.3069
2021-07-11 15:48:54,887 - mmdet - INFO - Epoch [5][100/232] lr: 2.927e-03, eta: 4:06:38, time: 1.965, data_time: 0.022, memory: 13366, loss_cls: 0.1782, loss_bbox: 0.6078, loss_dir: 0.0831, loss: 0.8691, grad_norm: 3.2023
2021-07-11 15:50:33,539 - mmdet - INFO - Epoch [5][150/232] lr: 2.927e-03, eta: 4:06:16, time: 1.973, data_time: 0.019, memory: 13387, loss_cls: 0.1755, loss_bbox: 0.5777, loss_dir: 0.0822, loss: 0.8354, grad_norm: 2.8246
2021-07-11 15:52:12,291 - mmdet - INFO - Epoch [5][200/232] lr: 2.927e-03, eta: 4:05:49, time: 1.975, data_time: 0.020, memory: 13387, loss_cls: 0.1702, loss_bbox: 0.5745, loss_dir: 0.0774, loss: 0.8221, grad_norm: 2.3913
2021-07-11 15:53:15,851 - mmdet - INFO - Saving checkpoint at 5 epochs
2021-07-11 15:55:08,163 - mmdet - INFO - Epoch [6][50/232] lr: 2.886e-03, eta: 3:59:11, time: 2.218, data_time: 0.256, memory: 13387, loss_cls: 0.1642, loss_bbox: 0.5479, loss_dir: 0.0726, loss: 0.7846, grad_norm: 2.1436
2021-07-11 15:56:46,892 - mmdet - INFO - Epoch [6][100/232] lr: 2.886e-03, eta: 3:58:44, time: 1.974, data_time: 0.021, memory: 13387, loss_cls: 0.1626, loss_bbox: 0.5568, loss_dir: 0.0694, loss: 0.7889, grad_norm: 2.2527
2021-07-11 15:58:25,265 - mmdet - INFO - Epoch [6][150/232] lr: 2.886e-03, eta: 3:58:10, time: 1.968, data_time: 0.020, memory: 13387, loss_cls: 0.1571, loss_bbox: 0.5365, loss_dir: 0.0710, loss: 0.7645, grad_norm: 2.3117
2021-07-11 16:00:04,072 - mmdet - INFO - Epoch [6][200/232] lr: 2.886e-03, eta: 3:57:34, time: 1.976, data_time: 0.021, memory: 13387, loss_cls: 0.1562, loss_bbox: 0.5312, loss_dir: 0.0638, loss: 0.7513, grad_norm: 1.8886
2021-07-11 16:01:07,843 - mmdet - INFO - Saving checkpoint at 6 epochs
2021-07-11 16:03:00,265 - mmdet - INFO - Epoch [7][50/232] lr: 2.837e-03, eta: 3:51:47, time: 2.218, data_time: 0.256, memory: 13387, loss_cls: 0.1515, loss_bbox: 0.5221, loss_dir: 0.0628, loss: 0.7364, grad_norm: 1.8673
2021-07-11 16:04:39,239 - mmdet - INFO - Epoch [7][100/232] lr: 2.837e-03, eta: 3:51:12, time: 1.980, data_time: 0.020, memory: 13387, loss_cls: 0.1479, loss_bbox: 0.5151, loss_dir: 0.0611, loss: 0.7242, grad_norm: 1.6473
2021-07-11 16:06:18,432 - mmdet - INFO - Epoch [7][150/232] lr: 2.837e-03, eta: 3:50:34, time: 1.984, data_time: 0.020, memory: 13387, loss_cls: 0.1462, loss_bbox: 0.5129, loss_dir: 0.0609, loss: 0.7200, grad_norm: 1.6338
2021-07-11 16:07:57,993 - mmdet - INFO - Epoch [7][200/232] lr: 2.837e-03, eta: 3:49:53, time: 1.991, data_time: 0.021, memory: 13387, loss_cls: 0.1475, loss_bbox: 0.5063, loss_dir: 0.0582, loss: 0.7120, grad_norm: 1.4538
2021-07-11 16:09:01,910 - mmdet - INFO - Saving checkpoint at 7 epochs
2021-07-11 16:10:55,268 - mmdet - INFO - Epoch [8][50/232] lr: 2.779e-03, eta: 3:44:47, time: 2.240, data_time: 0.229, memory: 13387, loss_cls: 0.1461, loss_bbox: 0.5041, loss_dir: 0.0576, loss: 0.7079, grad_norm: 1.4875
2021-07-11 16:12:34,257 - mmdet - INFO - Epoch [8][100/232] lr: 2.779e-03, eta: 3:44:03, time: 1.980, data_time: 0.021, memory: 13387, loss_cls: 0.1374, loss_bbox: 0.4963, loss_dir: 0.0544, loss: 0.6881, grad_norm: 1.5881
2021-07-11 16:14:14,353 - mmdet - INFO - Epoch [8][150/232] lr: 2.779e-03, eta: 3:43:21, time: 2.002, data_time: 0.020, memory: 13387, loss_cls: 0.1367, loss_bbox: 0.4943, loss_dir: 0.0589, loss: 0.6898, grad_norm: 1.5008
2021-07-11 16:15:53,892 - mmdet - INFO - Epoch [8][200/232] lr: 2.779e-03, eta: 3:42:34, time: 1.991, data_time: 0.023, memory: 13387, loss_cls: 0.1358, loss_bbox: 0.4719, loss_dir: 0.0539, loss: 0.6615, grad_norm: 1.3218
2021-07-11 16:16:57,578 - mmdet - INFO - Saving checkpoint at 8 epochs
2021-07-11 16:18:50,348 - mmdet - INFO - Epoch [9][50/232] lr: 2.714e-03, eta: 3:37:49, time: 2.225, data_time: 0.254, memory: 13387, loss_cls: 0.1349, loss_bbox: 0.4754, loss_dir: 0.0519, loss: 0.6621, grad_norm: 1.5146
2021-07-11 16:20:29,514 - mmdet - INFO - Epoch [9][100/232] lr: 2.714e-03, eta: 3:37:00, time: 1.983, data_time: 0.021, memory: 13387, loss_cls: 0.1296, loss_bbox: 0.4787, loss_dir: 0.0525, loss: 0.6609, grad_norm: 1.4022
2021-07-11 16:22:08,776 - mmdet - INFO - Epoch [9][150/232] lr: 2.714e-03, eta: 3:36:09, time: 1.985, data_time: 0.020, memory: 13387, loss_cls: 0.1313, loss_bbox: 0.4694, loss_dir: 0.0541, loss: 0.6548, grad_norm: 1.5006
2021-07-11 16:23:48,036 - mmdet - INFO - Epoch [9][200/232] lr: 2.714e-03, eta: 3:35:15, time: 1.986, data_time: 0.022, memory: 13387, loss_cls: 0.1305, loss_bbox: 0.4612, loss_dir: 0.0518, loss: 0.6435, grad_norm: 1.2324
2021-07-11 16:24:51,503 - mmdet - INFO - Saving checkpoint at 9 epochs
2021-07-11 16:26:44,644 - mmdet - INFO - Epoch [10][50/232] lr: 2.641e-03, eta: 3:30:52, time: 2.233, data_time: 0.263, memory: 13387, loss_cls: 0.1274, loss_bbox: 0.4594, loss_dir: 0.0491, loss: 0.6360, grad_norm: 1.2031
2021-07-11 16:28:23,209 - mmdet - INFO - Epoch [10][100/232] lr: 2.641e-03, eta: 3:29:56, time: 1.971, data_time: 0.020, memory: 13387, loss_cls: 0.1239, loss_bbox: 0.4595, loss_dir: 0.0493, loss: 0.6327, grad_norm: 1.2149
2021-07-11 16:30:02,478 - mmdet - INFO - Epoch [10][150/232] lr: 2.641e-03, eta: 3:29:00, time: 1.985, data_time: 0.021, memory: 13387, loss_cls: 0.1224, loss_bbox: 0.4552, loss_dir: 0.0500, loss: 0.6277, grad_norm: 1.2579
2021-07-11 16:31:42,666 - mmdet - INFO - Epoch [10][200/232] lr: 2.641e-03, eta: 3:28:05, time: 2.004, data_time: 0.022, memory: 13387, loss_cls: 0.1267, loss_bbox: 0.4486, loss_dir: 0.0483, loss: 0.6236, grad_norm: 1.1071
2021-07-11 16:32:46,667 - mmdet - INFO - Saving checkpoint at 10 epochs
2021-07-11 16:34:39,416 - mmdet - INFO - Epoch [11][50/232] lr: 2.561e-03, eta: 3:23:57, time: 2.231, data_time: 0.254, memory: 13387, loss_cls: 0.1253, loss_bbox: 0.4351, loss_dir: 0.0452, loss: 0.6055, grad_norm: 1.1472
2021-07-11 16:36:18,667 - mmdet - INFO - Epoch [11][100/232] lr: 2.561e-03, eta: 3:22:59, time: 1.985, data_time: 0.019, memory: 13387, loss_cls: 0.1179, loss_bbox: 0.4321, loss_dir: 0.0445, loss: 0.5944, grad_norm: 1.1689
2021-07-11 16:37:58,395 - mmdet - INFO - Epoch [11][150/232] lr: 2.561e-03, eta: 3:22:00, time: 1.994, data_time: 0.020, memory: 13387, loss_cls: 0.1161, loss_bbox: 0.4297, loss_dir: 0.0460, loss: 0.5917, grad_norm: 1.1279
2021-07-11 16:39:37,908 - mmdet - INFO - Epoch [11][200/232] lr: 2.561e-03, eta: 3:20:59, time: 1.990, data_time: 0.021, memory: 13387, loss_cls: 0.1196, loss_bbox: 0.4342, loss_dir: 0.0452, loss: 0.5990, grad_norm: 1.0708
2021-07-11 16:40:41,134 - mmdet - INFO - Saving checkpoint at 11 epochs
2021-07-11 16:42:33,835 - mmdet - INFO - Epoch [12][50/232] lr: 2.474e-03, eta: 3:17:03, time: 2.228, data_time: 0.241, memory: 13387, loss_cls: 0.1181, loss_bbox: 0.4218, loss_dir: 0.0430, loss: 0.5829, grad_norm: 1.0978
2021-07-11 16:44:13,422 - mmdet - INFO - Epoch [12][100/232] lr: 2.474e-03, eta: 3:16:02, time: 1.992, data_time: 0.020, memory: 13387, loss_cls: 0.1161, loss_bbox: 0.4267, loss_dir: 0.0430, loss: 0.5858, grad_norm: 1.1200
2021-07-11 16:45:52,246 - mmdet - INFO - Epoch [12][150/232] lr: 2.474e-03, eta: 3:14:58, time: 1.976, data_time: 0.020, memory: 13387, loss_cls: 0.1171, loss_bbox: 0.4318, loss_dir: 0.0445, loss: 0.5934, grad_norm: 1.1773
2021-07-11 16:47:31,292 - mmdet - INFO - Epoch [12][200/232] lr: 2.474e-03, eta: 3:13:53, time: 1.981, data_time: 0.020, memory: 13387, loss_cls: 0.1158, loss_bbox: 0.4135, loss_dir: 0.0421, loss: 0.5714, grad_norm: 1.0773
2021-07-11 16:48:34,868 - mmdet - INFO - Saving checkpoint at 12 epochs
2021-07-11 16:50:28,074 - mmdet - INFO - Epoch [13][50/232] lr: 2.382e-03, eta: 3:10:09, time: 2.235, data_time: 0.254, memory: 13387, loss_cls: 0.1119, loss_bbox: 0.4056, loss_dir: 0.0410, loss: 0.5584, grad_norm: 1.0298
2021-07-11 16:52:06,853 - mmdet - INFO - Epoch [13][100/232] lr: 2.382e-03, eta: 3:09:03, time: 1.976, data_time: 0.019, memory: 13387, loss_cls: 0.1094, loss_bbox: 0.4064, loss_dir: 0.0405, loss: 0.5563, grad_norm: 1.0687
2021-07-11 16:53:46,137 - mmdet - INFO - Epoch [13][150/232] lr: 2.382e-03, eta: 3:07:58, time: 1.985, data_time: 0.019, memory: 13387, loss_cls: 0.1113, loss_bbox: 0.4065, loss_dir: 0.0436, loss: 0.5614, grad_norm: 1.1020
2021-07-11 16:55:25,794 - mmdet - INFO - Epoch [13][200/232] lr: 2.382e-03, eta: 3:06:51, time: 1.993, data_time: 0.021, memory: 13387, loss_cls: 0.1127, loss_bbox: 0.4010, loss_dir: 0.0396, loss: 0.5533, grad_norm: 0.9998
2021-07-11 16:56:29,695 - mmdet - INFO - Saving checkpoint at 13 epochs
2021-07-11 16:58:22,939 - mmdet - INFO - Epoch [14][50/232] lr: 2.284e-03, eta: 3:03:16, time: 2.235, data_time: 0.262, memory: 13387, loss_cls: 0.1096, loss_bbox: 0.3905, loss_dir: 0.0387, loss: 0.5389, grad_norm: 1.0710
2021-07-11 17:00:02,506 - mmdet - INFO - Epoch [14][100/232] lr: 2.284e-03, eta: 3:02:09, time: 1.991, data_time: 0.022, memory: 13387, loss_cls: 0.1085, loss_bbox: 0.3981, loss_dir: 0.0389, loss: 0.5455, grad_norm: 1.0234
2021-07-11 17:01:42,353 - mmdet - INFO - Epoch [14][150/232] lr: 2.284e-03, eta: 3:01:02, time: 1.997, data_time: 0.019, memory: 13387, loss_cls: 0.1075, loss_bbox: 0.3992, loss_dir: 0.0390, loss: 0.5457, grad_norm: 0.9754
2021-07-11 17:03:21,397 - mmdet - INFO - Epoch [14][200/232] lr: 2.284e-03, eta: 2:59:53, time: 1.981, data_time: 0.021, memory: 13387, loss_cls: 0.1097, loss_bbox: 0.3925, loss_dir: 0.0383, loss: 0.5404, grad_norm: 0.9678
2021-07-11 17:04:24,985 - mmdet - INFO - Saving checkpoint at 14 epochs
2021-07-11 17:06:17,836 - mmdet - INFO - Epoch [15][50/232] lr: 2.181e-03, eta: 2:56:25, time: 2.232, data_time: 0.249, memory: 13387, loss_cls: 0.1058, loss_bbox: 0.3838, loss_dir: 0.0376, loss: 0.5271, grad_norm: 0.9435
2021-07-11 17:07:56,808 - mmdet - INFO - Epoch [15][100/232] lr: 2.181e-03, eta: 2:55:15, time: 1.979, data_time: 0.020, memory: 13387, loss_cls: 0.1040, loss_bbox: 0.3893, loss_dir: 0.0358, loss: 0.5291, grad_norm: 0.9500
2021-07-11 17:09:36,459 - mmdet - INFO - Epoch [15][150/232] lr: 2.181e-03, eta: 2:54:05, time: 1.993, data_time: 0.018, memory: 13387, loss_cls: 0.1038, loss_bbox: 0.3830, loss_dir: 0.0377, loss: 0.5245, grad_norm: 1.0048
2021-07-11 17:11:15,746 - mmdet - INFO - Epoch [15][200/232] lr: 2.181e-03, eta: 2:52:54, time: 1.986, data_time: 0.021, memory: 13387, loss_cls: 0.1072, loss_bbox: 0.3787, loss_dir: 0.0369, loss: 0.5227, grad_norm: 0.9848
2021-07-11 17:12:20,333 - mmdet - INFO - Saving checkpoint at 15 epochs
2021-07-11 17:14:12,965 - mmdet - INFO - Epoch [16][50/232] lr: 2.074e-03, eta: 2:49:32, time: 2.225, data_time: 0.255, memory: 13387, loss_cls: 0.1055, loss_bbox: 0.3760, loss_dir: 0.0363, loss: 0.5178, grad_norm: 0.9393
2021-07-11 17:17:33,749 - mmdet - INFO - Epoch [16][100/232] lr: 2.074e-03, eta: 2:51:02, time: 4.015, data_time: 0.022, memory: 13387, loss_cls: 0.1042, loss_bbox: 0.3814, loss_dir: 0.0361, loss: 0.5217, grad_norm: 1.0254
2021-07-11 17:21:58,973 - mmdet - INFO - Epoch [16][150/232] lr: 2.074e-03, eta: 2:54:05, time: 5.305, data_time: 0.027, memory: 13387, loss_cls: 0.1034, loss_bbox: 0.3746, loss_dir: 0.0356, loss: 0.5136, grad_norm: 0.9405
2021-07-11 17:24:43,249 - mmdet - INFO - Epoch [16][200/232] lr: 2.074e-03, eta: 2:54:22, time: 3.285, data_time: 0.024, memory: 13387, loss_cls: 0.1026, loss_bbox: 0.3602, loss_dir: 0.0341, loss: 0.4970, grad_norm: 0.9423
2021-07-11 17:25:47,254 - mmdet - INFO - Saving checkpoint at 16 epochs
2021-07-11 17:27:40,473 - mmdet - INFO - Epoch [17][50/232] lr: 1.964e-03, eta: 2:50:48, time: 2.238, data_time: 0.256, memory: 13387, loss_cls: 0.1007, loss_bbox: 0.3549, loss_dir: 0.0325, loss: 0.4881, grad_norm: 0.9208
2021-07-11 17:29:19,227 - mmdet - INFO - Epoch [17][100/232] lr: 1.964e-03, eta: 2:49:24, time: 1.975, data_time: 0.022, memory: 13387, loss_cls: 0.1005, loss_bbox: 0.3595, loss_dir: 0.0320, loss: 0.4920, grad_norm: 0.9495
2021-07-11 17:30:59,041 - mmdet - INFO - Epoch [17][150/232] lr: 1.964e-03, eta: 2:48:00, time: 1.996, data_time: 0.022, memory: 13387, loss_cls: 0.1011, loss_bbox: 0.3625, loss_dir: 0.0343, loss: 0.4980, grad_norm: 0.9710
2021-07-11 17:32:38,494 - mmdet - INFO - Epoch [17][200/232] lr: 1.964e-03, eta: 2:46:36, time: 1.989, data_time: 0.022, memory: 13387, loss_cls: 0.1003, loss_bbox: 0.3617, loss_dir: 0.0335, loss: 0.4955, grad_norm: 0.9530
2021-07-11 17:33:42,022 - mmdet - INFO - Saving checkpoint at 17 epochs
2021-07-11 17:35:34,991 - mmdet - INFO - Epoch [18][50/232] lr: 1.850e-03, eta: 2:43:09, time: 2.232, data_time: 0.264, memory: 13387, loss_cls: 0.0970, loss_bbox: 0.3457, loss_dir: 0.0312, loss: 0.4739, grad_norm: 0.9203
2021-07-11 17:37:14,027 - mmdet - INFO - Epoch [18][100/232] lr: 1.850e-03, eta: 2:41:45, time: 1.981, data_time: 0.021, memory: 13387, loss_cls: 0.0952, loss_bbox: 0.3499, loss_dir: 0.0317, loss: 0.4767, grad_norm: 0.9311
2021-07-11 17:38:53,209 - mmdet - INFO - Epoch [18][150/232] lr: 1.850e-03, eta: 2:40:20, time: 1.984, data_time: 0.020, memory: 13387, loss_cls: 0.0974, loss_bbox: 0.3495, loss_dir: 0.0328, loss: 0.4796, grad_norm: 0.9583
2021-07-11 17:40:32,792 - mmdet - INFO - Epoch [18][200/232] lr: 1.850e-03, eta: 2:38:56, time: 1.992, data_time: 0.021, memory: 13387, loss_cls: 0.0989, loss_bbox: 0.3474, loss_dir: 0.0326, loss: 0.4789, grad_norm: 0.8884
2021-07-11 17:41:36,523 - mmdet - INFO - Saving checkpoint at 18 epochs
2021-07-11 17:43:29,479 - mmdet - INFO - Epoch [19][50/232] lr: 1.735e-03, eta: 2:35:35, time: 2.228, data_time: 0.253, memory: 13387, loss_cls: 0.0956, loss_bbox: 0.3403, loss_dir: 0.0309, loss: 0.4669, grad_norm: 0.9316
2021-07-11 17:45:08,752 - mmdet - INFO - Epoch [19][100/232] lr: 1.735e-03, eta: 2:34:11, time: 1.986, data_time: 0.021, memory: 13387, loss_cls: 0.0956, loss_bbox: 0.3512, loss_dir: 0.0309, loss: 0.4777, grad_norm: 0.9507
2021-07-11 17:46:48,162 - mmdet - INFO - Epoch [19][150/232] lr: 1.735e-03, eta: 2:32:46, time: 1.988, data_time: 0.022, memory: 13387, loss_cls: 0.0947, loss_bbox: 0.3468, loss_dir: 0.0313, loss: 0.4728, grad_norm: 0.8807
2021-07-11 17:48:27,990 - mmdet - INFO - Epoch [19][200/232] lr: 1.735e-03, eta: 2:31:22, time: 1.996, data_time: 0.021, memory: 13387, loss_cls: 0.0972, loss_bbox: 0.3409, loss_dir: 0.0307, loss: 0.4688, grad_norm: 0.9698
2021-07-11 17:49:31,942 - mmdet - INFO - Saving checkpoint at 19 epochs
2021-07-11 17:51:24,818 - mmdet - INFO - Epoch [20][50/232] lr: 1.618e-03, eta: 2:28:06, time: 2.229, data_time: 0.225, memory: 13387, loss_cls: 0.0951, loss_bbox: 0.3307, loss_dir: 0.0303, loss: 0.4562, grad_norm: 0.9795
2021-07-11 17:53:03,825 - mmdet - INFO - Epoch [20][100/232] lr: 1.618e-03, eta: 2:26:41, time: 1.980, data_time: 0.021, memory: 13387, loss_cls: 0.0938, loss_bbox: 0.3386, loss_dir: 0.0308, loss: 0.4632, grad_norm: 0.8269
2021-07-11 17:54:43,345 - mmdet - INFO - Epoch [20][150/232] lr: 1.618e-03, eta: 2:25:17, time: 1.991, data_time: 0.020, memory: 13387, loss_cls: 0.0908, loss_bbox: 0.3327, loss_dir: 0.0297, loss: 0.4531, grad_norm: 0.9651
2021-07-11 17:56:22,976 - mmdet - INFO - Epoch [20][200/232] lr: 1.618e-03, eta: 2:23:52, time: 1.993, data_time: 0.022, memory: 13387, loss_cls: 0.0926, loss_bbox: 0.3258, loss_dir: 0.0303, loss: 0.4487, grad_norm: 0.8369
2021-07-11 17:57:26,855 - mmdet - INFO - Saving checkpoint at 20 epochs
2021-07-11 17:59:19,548 - mmdet - INFO - Epoch [21][50/232] lr: 1.500e-03, eta: 2:20:41, time: 2.227, data_time: 0.244, memory: 13387, loss_cls: 0.0919, loss_bbox: 0.3240, loss_dir: 0.0276, loss: 0.4434, grad_norm: 0.9192
2021-07-11 18:00:59,067 - mmdet - INFO - Epoch [21][100/232] lr: 1.500e-03, eta: 2:19:16, time: 1.991, data_time: 0.020, memory: 13387, loss_cls: 0.0903, loss_bbox: 0.3229, loss_dir: 0.0284, loss: 0.4415, grad_norm: 0.9065
2021-07-11 18:02:38,470 - mmdet - INFO - Epoch [21][150/232] lr: 1.500e-03, eta: 2:17:51, time: 1.988, data_time: 0.019, memory: 13387, loss_cls: 0.0906, loss_bbox: 0.3282, loss_dir: 0.0282, loss: 0.4470, grad_norm: 0.9147
2021-07-11 18:04:17,817 - mmdet - INFO - Epoch [21][200/232] lr: 1.500e-03, eta: 2:16:26, time: 1.987, data_time: 0.019, memory: 13387, loss_cls: 0.0901, loss_bbox: 0.3181, loss_dir: 0.0291, loss: 0.4372, grad_norm: 0.8395
2021-07-11 18:05:21,696 - mmdet - INFO - Saving checkpoint at 21 epochs
2021-07-11 18:07:13,688 - mmdet - INFO - Epoch [22][50/232] lr: 1.382e-03, eta: 2:13:19, time: 2.211, data_time: 0.248, memory: 13387, loss_cls: 0.0884, loss_bbox: 0.3115, loss_dir: 0.0266, loss: 0.4265, grad_norm: 0.9200
2021-07-11 18:08:52,793 - mmdet - INFO - Epoch [22][100/232] lr: 1.382e-03, eta: 2:11:53, time: 1.982, data_time: 0.020, memory: 13387, loss_cls: 0.0891, loss_bbox: 0.3109, loss_dir: 0.0258, loss: 0.4258, grad_norm: 0.9239
2021-07-11 18:10:32,771 - mmdet - INFO - Epoch [22][150/232] lr: 1.382e-03, eta: 2:10:28, time: 2.000, data_time: 0.018, memory: 13387, loss_cls: 0.0871, loss_bbox: 0.3243, loss_dir: 0.0271, loss: 0.4384, grad_norm: 0.9566
2021-07-11 18:12:12,735 - mmdet - INFO - Epoch [22][200/232] lr: 1.382e-03, eta: 2:09:03, time: 1.999, data_time: 0.020, memory: 13387, loss_cls: 0.0892, loss_bbox: 0.3150, loss_dir: 0.0279, loss: 0.4321, grad_norm: 0.9151
2021-07-11 18:13:16,608 - mmdet - INFO - Saving checkpoint at 22 epochs
2021-07-11 18:15:09,444 - mmdet - INFO - Epoch [23][50/232] lr: 1.265e-03, eta: 2:06:01, time: 2.233, data_time: 0.251, memory: 13387, loss_cls: 0.0881, loss_bbox: 0.3039, loss_dir: 0.0259, loss: 0.4179, grad_norm: 0.8934
2021-07-11 18:16:48,600 - mmdet - INFO - Epoch [23][100/232] lr: 1.265e-03, eta: 2:04:35, time: 1.983, data_time: 0.020, memory: 13387, loss_cls: 0.0860, loss_bbox: 0.3120, loss_dir: 0.0262, loss: 0.4242, grad_norm: 0.9289
2021-07-11 18:18:27,563 - mmdet - INFO - Epoch [23][150/232] lr: 1.265e-03, eta: 2:03:09, time: 1.979, data_time: 0.019, memory: 13387, loss_cls: 0.0851, loss_bbox: 0.3133, loss_dir: 0.0279, loss: 0.4263, grad_norm: 0.8687
2021-07-11 18:20:07,103 - mmdet - INFO - Epoch [23][200/232] lr: 1.265e-03, eta: 2:01:43, time: 1.991, data_time: 0.019, memory: 13387, loss_cls: 0.0875, loss_bbox: 0.3105, loss_dir: 0.0263, loss: 0.4242, grad_norm: 0.8559
2021-07-11 18:21:11,038 - mmdet - INFO - Saving checkpoint at 23 epochs
2021-07-11 18:23:04,124 - mmdet - INFO - Epoch [24][50/232] lr: 1.150e-03, eta: 1:58:44, time: 2.233, data_time: 0.262, memory: 13387, loss_cls: 0.0856, loss_bbox: 0.3008, loss_dir: 0.0257, loss: 0.4121, grad_norm: 0.8595