Skip to content

Latest commit

 

History

History
56 lines (44 loc) · 1.56 KB

INSTALL.md

File metadata and controls

56 lines (44 loc) · 1.56 KB

Installation

Requirements:

Option 1: Step-by-step installation

# first, make sure that your conda is setup properly with the right environment
# for that, check that `which conda`, `which pip` and `which python` points to the
# right path. From a clean conda env, this is what you need to do

conda create --name maskrcnn_benchmark
source activate maskrcnn_benchmark

# this installs the right pip and dependencies for the fresh python
conda install ipython

# maskrcnn_benchmark and coco api dependencies
pip install ninja yacs cython matplotlib

# follow PyTorch installation in https://pytorch.org/get-started/locally/
# we give the instructions for CUDA 9.0
conda install pytorch-nightly cudatoolkit=9.0 -c pytorch

# install torchvision
cd ~/github
git clone https://github.com/pytorch/vision.git
cd vision
python setup.py install

# install pycocotools
cd ~/github
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

# install PyTorch maskscoring_rcnn
cd ~/github
git clone https://github.com/zjhuang22/maskscoring_rcnn.git
cd maskscoring_rcnn
# the following will install the lib with
# symbolic links, so that you can modify
# the files if you want and won't need to
# re-build it
python setup.py build develop

# or if you are on macOS
# MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop