-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.py
221 lines (200 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
* This file is part of RNIN-VIO
*
* Copyright (c) ZJU-SenseTime Joint Lab of 3D Vision. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
"""
import os
import time
import matplotlib.pyplot as plt
from os import path as osp
from tqdm import tqdm
import numpy as np
import torch
from model import function
from torch.utils.tensorboard import SummaryWriter
import logging
def torch_to_numpy(torch_data):
return torch_data.cpu().detach().numpy()
def write_summary(summary_writer, attr_dict, epoch, optimizer, mode):
mse_loss = np.mean((attr_dict["targets"] - attr_dict["preds"]) ** 2, axis=0)
ml_loss = np.average(attr_dict["losses"])
summary_writer.add_scalar(f"{mode}_loss/avg", np.mean(mse_loss), epoch)
summary_writer.add_scalar(f"{mode}_dist/loss_full", ml_loss, epoch)
if epoch > 0:
summary_writer.add_scalar(
"optimizer/lr", optimizer.param_groups[0]["lr"], epoch - 1
)
logging.info(f"{mode}: average ml loss: {ml_loss}")
def save_model(path, epoch, network, optimizer, use_multi_gpu=False):
model_path = osp.join(path, "checkpoints", "checkpoint_%d.pt" % epoch)
if not osp.isdir(osp.join(path, "checkpoints")):
os.makedirs(osp.join(path, "checkpoints"))
if use_multi_gpu:
state_dict = {
"model_state_dict": network.module.state_dict(),
"epoch": epoch,
"optimizer_state_dict": optimizer.state_dict(),
}
else:
state_dict = {
"model_state_dict": network.state_dict(),
"epoch": epoch,
"optimizer_state_dict": optimizer.state_dict(),
}
torch.save(state_dict, model_path)
logging.info(f"Model saved to {model_path}")
class trainer(object):
def __init__(self, args, cfg, model, optimizer, start_epoch=0):
super(trainer, self).__init__()
self.local_rank = args.local_rank
self.cfg = cfg
self.device = torch.device(
f"cuda:{args.local_rank}" if torch.cuda.is_available() else "cpu"
)
self.model = model
self.optimizer = optimizer
# self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=20)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, factor=cfg['train']['scheduler']['factor'],
patience=cfg['train']['scheduler']['patience'], verbose=True, eps=1e-12
)
logging.info(f"Optimizer: {self.optimizer}, Scheduler: {self.scheduler}")
self.out_dir = cfg['train']['out_dir']
self.summary_writer = SummaryWriter(os.path.join(self.out_dir, "logs"))
self.start_epoch = start_epoch
self.use_multi_gpu = cfg['train']['use_multi_gpu']
self.predict_start = cfg['train']['predict_start']
self.predict_end = cfg['train']['predict_end']
self.window_time = cfg['model_param']['window_time']
self.epochs = cfg['train']['epochs']
self.start_cov_epochs = cfg['train']['start_cov_epochs']
self.pred_velocity = cfg['model']['pred_velocity']
def inference_step(self, data_loader, epoch):
targets_all, preds_all, preds_cov_all, losses_all = [], [], [], []
self.model.eval()
with torch.no_grad():
for bid, batch in tqdm(enumerate(data_loader)):
if self.use_multi_gpu:
batch = [t.cuda(self.local_rank, non_blocking=True) for t in batch]
else:
batch = [t.to(self.device) for t in batch]
pred, pred_cov, targ, loss = \
function.fun_train_forward(self.cfg, self.model, batch, self.start_cov_epochs, epoch)
targets_all.append(torch_to_numpy(targ))
preds_all.append(torch_to_numpy(pred))
preds_cov_all.append(torch_to_numpy(pred_cov))
losses_all.append(np.mean(torch_to_numpy(loss)))
targets_all = np.concatenate(targets_all, axis=0)
preds_all = np.concatenate(preds_all, axis=0)
preds_cov_all = np.concatenate(preds_cov_all, axis=0)
attr_dict = {
"targets": targets_all,
"preds": preds_all,
"preds_cov": preds_cov_all,
"losses": losses_all,
}
return attr_dict
def train_step(self, data_loader, epoch):
train_targets, train_preds, train_preds_cov, train_losses = [], [], [], []
self.model.train()
for bid, batch in tqdm(enumerate(data_loader)):
if self.use_multi_gpu:
batch = [t.cuda(self.local_rank, non_blocking=True) for t in batch]
else:
batch = [t.to(self.device) for t in batch]
self.optimizer.zero_grad()
pred, pred_cov, targ, loss = \
function.fun_train_forward(self.cfg, self.model, batch, self.start_cov_epochs, epoch)
train_targets.append(torch_to_numpy(targ))
train_preds.append(torch_to_numpy(pred))
train_preds_cov.append(torch_to_numpy(pred_cov))
train_losses.append(np.mean(torch_to_numpy(loss)))
loss.backward()
self.optimizer.step()
train_targets = np.concatenate(train_targets, axis=0)
train_preds = np.concatenate(train_preds, axis=0)
train_preds_cov = np.concatenate(train_preds_cov, axis=0)
train_attr_dict = {
"targets": train_targets,
"preds": train_preds,
"preds_cov": train_preds_cov,
"losses": train_losses,
}
return train_attr_dict
def train(self, train_loader, val_loader=None, test_loader=None):
best_val_loss = np.inf
best_train_loss = np.inf
val_loss, val_mse, test_loss = [], [], []
train_loss, train_mse, test_mse = [], [], []
for epoch in range(self.start_epoch + 1, self.epochs):
logging.info(f"-------------- Training, Epoch {epoch} ---------------")
start_t = time.time()
train_attr_dict = self.train_step(train_loader, epoch)
write_summary(self.summary_writer, train_attr_dict, epoch, self.optimizer, "train")
end_t = time.time()
logging.info(f"time usage: {end_t - start_t:.3f}s, lr {self.optimizer.param_groups[0]['lr']}")
train_loss.append(np.average(train_attr_dict["losses"]))
train_mse.append(np.mean((train_attr_dict["targets"] - train_attr_dict["preds"]) ** 2))
if val_loader is not None:
val_attr_dict = self.inference_step(val_loader, epoch)
write_summary(self.summary_writer, val_attr_dict, epoch, self.optimizer, "val")
self.scheduler.step(np.average(val_attr_dict["losses"]))
if np.mean(val_attr_dict["losses"]) < best_val_loss:
best_val_loss = np.mean(val_attr_dict["losses"])
save_model(self.out_dir, epoch, self.model, self.optimizer, self.use_multi_gpu)
elif np.mean(train_attr_dict["losses"]) < best_train_loss:
best_train_loss = np.mean(train_attr_dict["losses"])
save_model(osp.join(self.out_dir, "best_train"), epoch, self.model, self.optimizer, self.use_multi_gpu)
val_loss.append(np.average(val_attr_dict["losses"]))
val_mse.append(np.mean((val_attr_dict["targets"] - val_attr_dict["preds"]) ** 2))
else:
self.scheduler.step(np.average(train_attr_dict["losses"]))
if np.mean(train_attr_dict["losses"]) < best_train_loss:
best_train_loss = np.mean(train_attr_dict["losses"])
# if epoch >= args.epochs - 1:
save_model(self.out_dir, epoch, self.model, self.optimizer, self.use_multi_gpu)
if test_loader is not None:
test_attr_dict = self.inference_step(test_loader, epoch)
write_summary(self.summary_writer, test_attr_dict, epoch, self.optimizer, "test")
test_loss.append(np.average(test_attr_dict["losses"]))
test_mse.append(np.mean((test_attr_dict["targets"] - test_attr_dict["preds"]) ** 2))
if self.optimizer.param_groups[0]['lr'] < 1.1e-6:
break
## save and plot epoch-loss
train_loss = np.array(train_loss)
train_mse = np.array(train_mse)
fig = plt.figure(num="loss", dpi=90, figsize=(16, 9))
plt.plot(range(train_loss.shape[0]), train_loss, "-b", linewidth=0.5, label="train_loss")
loss_all = train_loss[:, np.newaxis]
mse_all = train_mse[:, np.newaxis]
if val_loader is not None:
val_loss = np.array(val_loss)
val_mse = np.array(val_mse)
plt.plot(range(val_loss.shape[0]), val_loss, "-r", linewidth=0.5, label="val_loss")
loss_all = np.concatenate((loss_all, val_loss[:, np.newaxis]), axis=1)
mse_all = np.concatenate((mse_all, val_mse[:, np.newaxis]), axis=1)
if test_loader is not None:
test_loss = np.array(test_loss)
test_mse = np.array(test_mse)
plt.plot(range(test_loss.shape[0]), test_loss, "-g", linewidth=0.5, label="test_loss")
loss_all = np.concatenate((loss_all, test_loss[:, np.newaxis]), axis=1)
mse_all = np.concatenate((mse_all, test_mse[:, np.newaxis]), axis=1)
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend()
fig.savefig(osp.join(self.out_dir, "epoch_loss.png"))
np.savetxt(osp.join(self.out_dir, "epoch_loss.txt"), loss_all, delimiter=',', )
np.savetxt(osp.join(self.out_dir, "epoch_mse.txt"), mse_all, delimiter=',', )
logging.info("Training complete.")