-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathblock_transformer_rewiring.py
245 lines (217 loc) · 11.3 KB
/
block_transformer_rewiring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
from function_transformer_attention import SpGraphTransAttentionLayer
from base_classes import ODEblock
from utils import get_rw_adj
from torch_scatter import scatter
import numpy as np
import torch_sparse
from torch_geometric.utils import remove_self_loops
class RewireAttODEblock(ODEblock):
def __init__(self, odefunc, regularization_fns, opt, data, device, t=torch.tensor([0, 1]), gamma=0.5):
super(RewireAttODEblock, self).__init__(odefunc, regularization_fns, opt, data, device, t)
assert opt['att_samp_pct'] > 0 and opt['att_samp_pct'] <= 1, "attention sampling threshold must be in (0,1]"
self.opt = opt
self.odefunc = odefunc(self.aug_dim * opt['hidden_dim'], self.aug_dim * opt['hidden_dim'], opt, data, device)
# self.odefunc.edge_index, self.odefunc.edge_weight = data.edge_index, edge_weight=data.edge_attr
self.num_nodes = data.num_nodes
edge_index, edge_weight = get_rw_adj(data.edge_index, edge_weight=data.edge_attr, norm_dim=1,
fill_value=opt['self_loop_weight'],
num_nodes=data.num_nodes,
dtype=data.x.dtype)
self.data_edge_index = edge_index.to(device)
self.odefunc.edge_index = edge_index.to(device) # this will be changed by attention scores
self.odefunc.edge_weight = edge_weight.to(device)
self.reg_odefunc.odefunc.edge_index, self.reg_odefunc.odefunc.edge_weight = self.odefunc.edge_index, self.odefunc.edge_weight
if opt['adjoint']:
from torchdiffeq import odeint_adjoint as odeint
else:
from torchdiffeq import odeint
self.train_integrator = odeint
self.test_integrator = odeint
self.set_tol()
# parameter trading off between attention and the Laplacian
if opt['function'] not in {'GAT', 'transformer'}:
self.multihead_att_layer = SpGraphTransAttentionLayer(opt['hidden_dim'], opt['hidden_dim'], opt,
device, edge_weights=self.odefunc.edge_weight).to(device)
def get_attention_weights(self, x):
if self.opt['function'] not in {'GAT', 'transformer'}:
attention, values = self.multihead_att_layer(x, self.data_edge_index)
else:
attention, values = self.odefunc.multihead_att_layer(x, self.data_edge_index)
return attention
def renormalise_attention(self, attention):
index = self.odefunc.edge_index[self.opt['attention_norm_idx']]
att_sums = scatter(attention, index, dim=0, dim_size=self.num_nodes, reduce='sum')[index]
return attention / (att_sums + 1e-16)
def add_random_edges(self):
# M = self.opt["M_nodes"]
# M = int(self.num_nodes * (1/(1 - (1 - self.opt['att_samp_pct'])) - 1))
M = int(self.num_nodes * (1/(1 - (self.opt['rw_addD'])) - 1))
with torch.no_grad():
new_edges = np.random.choice(self.num_nodes, size=(2,M), replace=True, p=None)
new_edges = torch.tensor(new_edges)
#todo check if should be using coalesce insted of unique
#eg https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/transforms/two_hop.html#TwoHop
cat = torch.cat([self.data_edge_index, new_edges],dim=1)
no_repeats = torch.unique(cat, sorted=False, return_inverse=False,
return_counts=False, dim=1)
self.data_edge_index = no_repeats
self.odefunc.edge_index = self.data_edge_index
def add_khop_edges(self, k=2, rm_self_loops=True):
n = self.num_nodes
for i in range(k-1):
new_edges, new_weights = torch_sparse.spspmm(self.odefunc.edge_index, self.odefunc.edge_weight,
self.odefunc.edge_index, self.odefunc.edge_weight, n, n, n, coalesced=True)
new_edges, new_weights = remove_self_loops(new_edges, new_weights)
# A1 = torch.sparse_coo_tensor(self.odefunc.edge_index, self.odefunc.edge_weight, (n, n)).coalesce()
# A2 = torch.sparse_coo_tensor(new_edges, new_weights, (n, n)).coalesce()
A1pA2_index = torch.cat([self.odefunc.edge_index, new_edges], dim=1)
A1pA2_value = torch.cat([self.odefunc.edge_weight, new_weights], dim=0) / 2
ei, ew = torch_sparse.coalesce(A1pA2_index, A1pA2_value, n, n, op="add")
self.data_edge_index = ei
self.odefunc.edge_index = self.data_edge_index
self.odefunc.attention_weights = ew
# if self.opt['threshold_type'] == 'topk_adj':
# #todo not efficient see graph rewiting A+A.T
# S_hat = (0.5 * A1 + 0.5 * A2).coalesce()
# self.data_edge_index = S_hat.indices()
# self.odefunc.attention_weights = S_hat.values()
#
# elif self.opt['threshold_type'] == 'addD_rvR':
# pass
# # AN = A2
# # npA1idx = A1.indices().numpy().T
# # npANidx = AN.indices().numpy().T
# #
# # A1_rows = np.ascontiguousarray(npA1idx).view(np.dtype((np.void, npA1idx.dtype.itemsize * npA1idx.shape[1])))
# # AN_rows = np.ascontiguousarray(npANidx).view(np.dtype((np.void, npANidx.dtype.itemsize * npANidx.shape[1])))
# # #todo use jax.numpy.in1d to do on GPU
# # removed_mask = np.in1d(A1_rows, AN_rows, assume_unique=True, invert=True)
# # added_mask = np.in1d(AN_rows, A1_rows, assume_unique=True, invert=True)
# #
# # assert len(A1_rows)+added_mask.sum()-removed_mask.sum()-len(AN_rows)==0
# #
# # threshold = torch.quantile(AN.values()[added_mask], 1 - self.opt['rw_addD'])
# # threshold_mask = AN.values()[added_mask] > threshold
# #
# # add_edges = npANidx[added_mask,:][threshold_mask,:]
# # add_values = AN.values()[added_mask][threshold_mask]
# # print(f"Add {add_edges.shape[0]} edges")
# #
# # combined_edges = torch.cat((self.odefunc.edge_index, torch.from_numpy(add_edges).T), dim=1)
# # combined_values = torch.cat((self.odefunc.edge_weight, add_values))
# #
# # self.data_edge_index = combined_edges
# # self.odefunc.edge_index = self.data_edge_index
# # self.odefunc.attention_weights = combined_values
# def add_rw_edges(self): #NOT COMPLETE
# # function to sample M random walks rather than densifying Adjacency
# # https: // github.com / rusty1s / pytorch_sparse / blob / master / torch_sparse / sample.py
# # def sample(src: SparseTensor, num_neighbors: int,
# # subset: Optional[torch.Tensor] = None) -> torch.Tensor:
# M = int(self.num_nodes * (1/(1 - (1 - self.opt['att_samp_pct'])) - 1))
# with torch.no_grad():
# M_start = np.random.choice(self.num_nodes, size=(M), replace=True, p=None)
# scale = 3.0
# L = np.abs(np.random.normal(loc=0, scale=scale, size=(M)))
# attention_weights = self.odefunc.attention_weights
# M_end = torch.zeros(M)
# for m, m_start in enumerate(M_start):
# fuel = L[m]
# while fuel > 0:
# current_node_mask = self.data_edge_index[0,:] == m_start
# p = attention_weights * current_node_mask
# m_start = np.random.choice(len(p), size=(M), replace=True, p=p)
# fuel -= 1 #written this way in case change cost of path length from 1
# M_end[m] = m_start
# # keep going until all steps taken
# # L[m] -= 1
def densify_edges(self):
if self.opt['new_edges'] == 'random':
self.add_random_edges()
elif self.opt['new_edges'] == 'random_walk':
self.add_rw_edges()
elif self.opt['new_edges'] == 'k_hop_lap':
pass
elif self.opt['new_edges'] == 'k_hop_att':
self.add_khop_edges(k=2)
def threshold_edges(self, x, threshold):
# get mean attention
# i) sparsify on S_hat
if self.opt['new_edges'] == 'k_hop_att' and self.opt['sparsify'] == 'S_hat':
attention_weights = self.odefunc.attention_weights
mean_att = attention_weights
# ii) sparsify on recalculated attentions
else:#elif self.opt['sparsify'] == 'recalc_att':
attention_weights = self.get_attention_weights(x)
mean_att = attention_weights.mean(dim=1, keepdim=False)
if self.opt['use_flux']:
src_features = x[self.data_edge_index[0, :], :]
dst_features = x[self.data_edge_index[1, :], :]
delta = torch.linalg.norm(src_features - dst_features, dim=1)
mean_att = mean_att * delta
# just for the test where threshold catches all edges
# unique_att = torch.unique(mean_att, sorted=False, return_inverse=False, return_counts=False, dim=0)
# print(f"mean_att {mean_att.shape}, unqiue atts: {unique_att.shape}")
# threshold
# threshold = torch.quantile(mean_att, 1 - self.opt['att_samp_pct'])
mask = mean_att > threshold
self.odefunc.edge_index = self.data_edge_index[:, mask.T]
sampled_attention_weights = self.renormalise_attention(mean_att[mask])
print('retaining {} of {} edges'.format(self.odefunc.edge_index.shape[1], self.data_edge_index.shape[1]))
self.data_edge_index = self.data_edge_index[:, mask.T]
self.odefunc.edge_weight = sampled_attention_weights #rewiring structure so need to replace any preproc ew's with new ew's
self.odefunc.attention_weights = sampled_attention_weights
def forward(self, x):
t = self.t.type_as(x)
if self.training:
with torch.no_grad():
#calc attentions for transition matrix
attention_weights = self.get_attention_weights(x)
self.odefunc.attention_weights = attention_weights.mean(dim=1, keepdim=False)
# Densify and threshold attention weights
pre_count = self.odefunc.edge_index.shape[1]
self.densify_edges()
post_count = self.odefunc.edge_index.shape[1]
pc_change = post_count /pre_count - 1
threshold = torch.quantile(self.odefunc.edge_weight, 1/(pc_change - self.opt['rw_addD']))
self.threshold_edges(x, threshold)
self.odefunc.edge_index = self.data_edge_index
attention_weights = self.get_attention_weights(x)
mean_att = attention_weights.mean(dim=1, keepdim=False)
self.odefunc.edge_weight = mean_att
self.odefunc.attention_weights = mean_att
self.reg_odefunc.odefunc.edge_index, self.reg_odefunc.odefunc.edge_weight = self.odefunc.edge_index, self.odefunc.edge_weight
self.reg_odefunc.odefunc.attention_weights = self.odefunc.attention_weights
integrator = self.train_integrator if self.training else self.test_integrator
reg_states = tuple(torch.zeros(x.size(0)).to(x) for i in range(self.nreg))
func = self.reg_odefunc if self.training and self.nreg > 0 else self.odefunc
state = (x,) + reg_states if self.training and self.nreg > 0 else x
if self.opt["adjoint"] and self.training:
state_dt = integrator(
func, state, t,
method=self.opt['method'],
options={'step_size': self.opt['step_size']},
adjoint_method=self.opt['adjoint_method'],
adjoint_options={'step_size': self.opt['adjoint_step_size']},
atol=self.atol,
rtol=self.rtol,
adjoint_atol=self.atol_adjoint,
adjoint_rtol=self.rtol_adjoint)
else:
state_dt = integrator(
func, state, t,
method=self.opt['method'],
options={'step_size': self.opt['step_size']},
atol=self.atol,
rtol=self.rtol)
if self.training and self.nreg > 0:
z = state_dt[0][1]
reg_states = tuple(st[1] for st in state_dt[1:])
return z, reg_states
else:
z = state_dt[1]
return z
def __repr__(self):
return self.__class__.__name__ + '( Time Interval ' + str(self.t[0].item()) + ' -> ' + str(self.t[1].item()) \
+ ")"