-
Notifications
You must be signed in to change notification settings - Fork 16
/
train.py
executable file
·365 lines (286 loc) · 16.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import pprint
import numpy as np
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
from tensorlayer.prepro import *
from random import shuffle
import argparse
pp = pprint.PrettyPrinter()
flags = tf.app.flags
flags.DEFINE_integer("epoch", 100, "Epoch to train [100]")
flags.DEFINE_float("learning_rate", 0.0002, "Learning rate of for adam [0.0002]")
flags.DEFINE_float("beta1", 0.5, "Momentum term of adam [0.5]")
# flags.DEFINE_float("weight_decay", 1e-5, "Weight decay for l2 loss")
# flags.DEFINE_integer("train_size", np.inf, "The size of train images [np.inf]")
flags.DEFINE_integer("batch_size", 64, "The number of batch images [64]")
flags.DEFINE_integer("image_size", 64, "The size of image to use (will be center cropped) [64]")
flags.DEFINE_integer("z_dim", 100, "Size of Noise embedding")
flags.DEFINE_integer("class_embedding_size", 5, "Size of class embedding")
# flags.DEFINE_integer("output_size", 64, "The size of the output images to produce [64]")
flags.DEFINE_integer("sample_size", 64, "The number of sample images [64]")
flags.DEFINE_integer("c_dim", 3, "Dimension of image color. [3]")
flags.DEFINE_integer("sample_step", 500, "The interval of generating sample. [500]")
flags.DEFINE_integer("save_step", 100, "The interval of saveing checkpoints. [200]")
flags.DEFINE_integer("imageEncoder_steps", 30000, "Number of train steps for image encoder")
flags.DEFINE_string("dataset", "svhn", "The name of dataset [celebA, obama_hillary, svhn, svhn_inpainting]")
flags.DEFINE_string("checkpoint_dir", "data/Models", "Directory name to save the checkpoints [checkpoint]")
flags.DEFINE_string("sample_dir", "data/samples", "Directory name to save the image samples [samples]")
# flags.DEFINE_boolean("is_train", False, "True for training, False for testing [False]")
# flags.DEFINE_boolean("is_crop", False, "True for training, False for testing [False]")
# flags.DEFINE_boolean("visualize", False, "True for visualizing, False for nothing [False]")
FLAGS = flags.FLAGS
# print(FLAGS)
# print(type(FLAGS), FLAGS.save_step)
# exit()
os.system('mkdir data')
os.system('mkdir {}'.format(FLAGS.sample_dir))
os.system('mkdir {}'.format(FLAGS.sample_dir+'/step1'))
os.system('mkdir {}'.format(FLAGS.sample_dir+'/step2'))
import data_loader
# from model import *
import model
from utils import *
if FLAGS.image_size == 64:
generator = model.generator
discriminator = model.discriminator
imageEncoder = model.imageEncoder
# elif FLAGS.image_size == 256:
# generator = model.generator_256
# discriminator = model.discriminator_256
# imageEncoder = model.imageEncoder_256
else:
raise Exception("image_size should be 64 or 256")
def train_ac_gan():
z_dim = FLAGS.z_dim
z_noise = tf.placeholder(tf.float32, [FLAGS.batch_size, z_dim], name='z_noise')
z_classes = tf.placeholder(tf.int64, shape=[FLAGS.batch_size, ], name='z_classes')
real_images = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, FLAGS.c_dim], name='real_images')
# z embedding
if FLAGS.class_embedding_size != None:
net_z_classes = EmbeddingInputlayer(inputs = z_classes, vocabulary_size = 2, embedding_size = FLAGS.class_embedding_size, name ='classes_embedding')
else:
net_z_classes = InputLayer(inputs = tf.one_hot(z_classes, 2), name ='classes_embedding')
# z --> generator for training
net_g, _ = generator(tf.concat(1, [z_noise, net_z_classes.outputs]), is_train=True, reuse=False)
# net_g.print_params(False)
# exit()
# generated fake images --> discriminator
net_d, d_logits_fake, _, d_logits_fake_class, _ = discriminator(net_g.outputs, is_train=True, reuse=False)
# real images --> discriminator
_, d_logits_real, _, d_logits_real_class, _ = discriminator(real_images, is_train=True, reuse=True)
# sample_z --> generator for evaluation, set is_train to False
net_g2, _ = generator(tf.concat(1, [z_noise, net_z_classes.outputs]), is_train=False, reuse=True)
# cost for updating discriminator and generator
# discriminator: real images are labelled as 1
# d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d_logits_real, tf.ones_like(d_logits_real))) # real == 1
d_loss_real = tl.cost.sigmoid_cross_entropy(d_logits_real, tf.ones_like(d_logits_real), name='dreal')
# discriminator: images from generator (fake) are labelled as 0
# d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d_logits_fake, tf.zeros_like(d_logits_fake))) # fake == 0
d_loss_fake = tl.cost.sigmoid_cross_entropy(d_logits_fake, tf.zeros_like(d_logits_fake), name='dfake')
d_loss_class = tl.cost.cross_entropy(d_logits_real_class, z_classes, name='ce') # cross-entropy
d_loss = d_loss_real + d_loss_fake + d_loss_class
# generator: try to make the the fake images look real (1)
g_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d_logits_fake, tf.ones_like(d_logits_fake)))
g_loss_class = tl.cost.cross_entropy(d_logits_fake_class, z_classes, name='g')
g_loss = g_loss_fake + g_loss_class
t_vars = tf.trainable_variables()
g_vars = [var for var in t_vars if 'generator' in var.name]
e_vars = [var for var in t_vars if 'classes_embedding' in var.name]
d_vars = [var for var in t_vars if 'discriminator' in var.name]
# optimizers for updating discriminator and generator
d_optim = tf.train.AdamOptimizer(FLAGS.learning_rate, beta1=FLAGS.beta1) \
.minimize(d_loss, var_list=d_vars)
g_optim = tf.train.AdamOptimizer(FLAGS.learning_rate, beta1=FLAGS.beta1) \
.minimize(g_loss, var_list=g_vars + e_vars)
sess=tf.Session()
tl.ops.set_gpu_fraction(sess=sess, gpu_fraction=0.5)
sess.run(tf.initialize_all_variables())
net_g_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_g.npz'.format(FLAGS.dataset))
net_d_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_d.npz'.format(FLAGS.dataset))
net_e_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_e.npz'.format(FLAGS.dataset))
if not FLAGS.retrain:
if not (os.path.exists(net_g_name) and os.path.exists(net_d_name) and os.path.exists(net_e_name)):
print("[!] Could not load weights from npz files")
else:
net_g_loaded_params = tl.files.load_npz(name=net_g_name)
net_d_loaded_params = tl.files.load_npz(name=net_d_name)
net_e_loaded_params = tl.files.load_npz(name=net_e_name)
tl.files.assign_params(sess, net_g_loaded_params, net_g)
tl.files.assign_params(sess, net_d_loaded_params, net_d)
tl.files.assign_params(sess, net_e_loaded_params, net_z_classes)
print("[*] Loading checkpoints SUCCESS!")
else:
print("[*] Retraining AC GAN")
class1_files, class2_files, class_flag = data_loader.load_data(FLAGS.dataset, split = "train")
# exit(class1_files[0:10])
is_class_balance = True # class balancing
if is_class_balance:
total_batches = 2 * max(len(class1_files), len(class2_files)) /FLAGS.batch_size
class1_files = np.asarray(class1_files)
class2_files = np.asarray(class2_files)
else:
all_files = class1_files + class2_files
total_batches = len(all_files)/FLAGS.batch_size
shuffle(all_files)
print("all_files", len(all_files))
print("Total_batches", total_batches)
for epoch in range(FLAGS.epoch):
for bn in range(0, int(total_batches)):
if is_class_balance:
# if bn % 2 == 0:
# idex = get_random_int(min=0, max=len(class1_files), number=FLAGS.batch_size)
# batch_files = class1_files[idex]
# else:
# idex = get_random_int(min=0, max=len(class2_files), number=FLAGS.batch_size)
# batch_files = class2_files[idex]
idex = get_random_int(min=0, max=len(class1_files)-1, number=int(FLAGS.batch_size /2)) #/2)
batch_files = class1_files[idex]
idex = get_random_int(min=0, max=len(class2_files)-1, number=int(FLAGS.batch_size /2)) #/2)
batch_files = np.concatenate((batch_files, class2_files[idex]))
else:
batch_files = all_files[bn*FLAGS.batch_size : (bn + 1) * FLAGS.batch_size]
batch_z = np.random.normal(loc=0.0, scale=1.0, size=(FLAGS.sample_size, z_dim)).astype(np.float32)
# batch_z = np.random.uniform(low=-1, high=1, size=(FLAGS.batch_size, z_dim)).astype(np.float32)
# batch_images = [imread(batch_file, is_grayscale=0) for batch_file in batch_files]
batch_images = threading_data(batch_files, fn=get_image_fn)
# if FLAGS.dataset != 'mnist_svhn':
batch_images = threading_data(batch_images, fn=distort_fn)
if "svhn" in FLAGS.dataset: # for celebA_inpainting
batch_images[:int(FLAGS.batch_size/2)] = threading_data(batch_images[:int(FLAGS.batch_size/2)], fn=add_noise_fn, keep=0.8)
batch_z_classes = [0]*int(FLAGS.batch_size/2) + [1]*int(FLAGS.batch_size/2)
else:
batch_z_classes = [0 if class_flag[file_name] == True else 1 for file_name in batch_files ]
# batch_images = [get_image(batch_file, FLAGS.image_size, is_crop=FLAGS.is_crop, resize_w=FLAGS.image_size, is_grayscale = 0, random_flip = True) for batch_file in batch_files]
# save_images(batch_images, [8,8], '_batch_images.png')
# print(batch_images.shape, batch_images.min(), batch_images.max())
# print(batch_z_classes)
# exit()
errD, _ = sess.run([d_loss, d_optim], feed_dict={
z_noise: batch_z,
z_classes : batch_z_classes,
real_images: batch_images
})
for _ in range(2):
errG, _ = sess.run([g_loss, g_optim], feed_dict={
z_noise: batch_z,
z_classes : batch_z_classes,
})
print("d_loss={}\t g_loss={}\t epoch={}\t batch_no={}\t total_batches={}".format(errD, errG, epoch, bn, total_batches))
if bn % FLAGS.save_step == 0:
print("[*] Saving Models...")
tl.files.save_npz(net_g.all_params, name=net_g_name, sess=sess)
tl.files.save_npz(net_d.all_params, name=net_d_name, sess=sess)
tl.files.save_npz(net_z_classes.all_params, name=net_e_name, sess=sess)
# Saving after each iteration
tl.files.save_npz(net_g.all_params, name=net_g_name + "_" + str(epoch), sess=sess)
tl.files.save_npz(net_d.all_params, name=net_d_name + "_" + str(epoch), sess=sess)
tl.files.save_npz(net_z_classes.all_params, name=net_e_name + "_" + str(epoch), sess=sess)
print("[*] Models saved")
generated_samples = sess.run([net_g2.outputs], feed_dict={
z_noise: batch_z,
z_classes : batch_z_classes,
})[0]
generated_samples_other_class = sess.run([net_g2.outputs], feed_dict={
z_noise: batch_z,
z_classes : [0 if batch_z_classes[i] == 1 else 1 for i in range(len(batch_z_classes))],
})[0]
combine_and_save_image_sets( [batch_images, generated_samples, generated_samples_other_class], FLAGS.sample_dir+'/step1')
def train_imageEncoder():
z_dim = FLAGS.z_dim
z_noise = tf.placeholder(tf.float32, [FLAGS.batch_size, z_dim], name='z_noise')
z_classes = tf.placeholder(tf.int64, shape=[FLAGS.batch_size, ], name='z_classes')
# real_images = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, FLAGS.c_dim], name='real_images')
if FLAGS.class_embedding_size != None:
net_z_classes = EmbeddingInputlayer(inputs = z_classes, vocabulary_size = 2, embedding_size = FLAGS.class_embedding_size, name ='classes_embedding')
else:
net_z_classes = InputLayer(inputs = tf.one_hot(z_classes, 2), name ='classes_embedding')
net_g, _ = generator(tf.concat(1, [z_noise, net_z_classes.outputs]), is_train=False, reuse=False)
# net_g.print_params(False)
# exit()
net_p = imageEncoder(net_g.outputs, is_train=True)
net_g2, _ = generator(tf.concat(1, [net_p.outputs, net_z_classes.outputs]), is_train=False, reuse=True)
t_vars = tf.trainable_variables()
p_vars = [var for var in t_vars if 'imageEncoder' in var.name]
# net_d, d_logits_fake, _, d_logits_fake_class, df_gen = discriminator(net_g2.outputs, is_train = False, reuse = False)
# _, _, _, _, df_real = discriminator(real_images, is_train = False, reuse = True)
# p_loss_l2 = tf.reduce_mean(tf.square(tf.sub(real_images, net_g2.outputs )))
# p_loss_df = tf.reduce_mean(tf.square(tf.sub(df_gen.outputs, df_real.outputs )))
# p_reg_loss = None
# for p_var in p_vars:
# if p_reg_loss == None:
# p_reg_loss = FLAGS.weight_decay * tf.nn.l2_loss(p_var)
# else:
# p_reg_loss += FLAGS.weight_decay * tf.nn.l2_loss(p_var)
# p_loss = p_loss_l2 + (p_loss_df * 0.5) #+ p_reg_loss
p_loss = tf.reduce_mean( tf.square( tf.sub( net_p.outputs, z_noise) ))
p_optim = tf.train.AdamOptimizer(FLAGS.learning_rate/2, beta1=FLAGS.beta1) \
.minimize(p_loss, var_list=p_vars)
sess = tf.Session()
tl.ops.set_gpu_fraction(sess=sess, gpu_fraction=0.5)
# sess.run(tf.initialize_all_variables())
tl.layers.initialize_global_variables(sess)
# RESTORE THE TRAINED AC_GAN
net_g_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_g.npz'.format(FLAGS.dataset))
# net_d_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_d.npz'.format(FLAGS.dataset))
net_e_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_e.npz'.format(FLAGS.dataset))
if not (os.path.exists(net_g_name) and os.path.exists(net_e_name)):
print("[!] Loading checkpoints failed!")
return
else:
net_g_loaded_params = tl.files.load_npz(name=net_g_name)
# net_d_loaded_params = tl.files.load_npz(name=net_d_name)
net_e_loaded_params = tl.files.load_npz(name=net_e_name)
tl.files.assign_params(sess, net_g_loaded_params, net_g2)
# tl.files.assign_params(sess, net_d_loaded_params, net_d)
tl.files.assign_params(sess, net_e_loaded_params, net_z_classes)
print("[*] Loading checkpoints SUCCESS!")
net_p_name = os.path.join(FLAGS.checkpoint_dir, '{}_net_p.npz'.format(FLAGS.dataset))
if not FLAGS.retrain:
net_p_loaded_params = tl.files.load_npz(name=net_p_name)
tl.files.assign_params(sess, net_p_loaded_params, net_p)
print("[*] Loaded Pretrained Image Encoder!")
else:
print("[*] Retraining ImageEncoder")
model_no = 0
for step in range(0, FLAGS.imageEncoder_steps):
batch_z_classes = [0 if random.random() > 0.5 else 1 for i in range(FLAGS.batch_size)]
batch_z = np.random.normal(loc=0.0, scale=1.0, size=(FLAGS.sample_size, z_dim)).astype(np.float32)
# batch_z = np.random.uniform(low=-1, high=1, size=(FLAGS.batch_size, z_dim)).astype(np.float32)
# batch_images = sess.run(net_g.outputs, feed_dict ={z_noise: batch_z, z_classes : batch_z_classes })
batch_images, gen_images, _, errP = sess.run([net_g.outputs, net_g2.outputs, p_optim, p_loss], feed_dict={
z_noise : batch_z,
z_classes : batch_z_classes,
})
print("p_loss={}\t step_no={}\t total_steps={}".format(errP, step, FLAGS.imageEncoder_steps))
if step % FLAGS.sample_step == 0:
print("[*] Sampling images")
combine_and_save_image_sets([batch_images, gen_images], FLAGS.sample_dir+'/step2')
if step % 2000 == 0:
model_no += 1
if step % FLAGS.save_step == 0:
print("[*] Saving Model")
tl.files.save_npz(net_p.all_params, name=net_p_name, sess=sess)
tl.files.save_npz(net_p.all_params, name=net_p_name + "_" + str(model_no), sess=sess)
print("[*] Model p(encoder) saved")
def main():#_):
parser = argparse.ArgumentParser()
parser.add_argument('--train_step', type=str, default="ac_gan",
help='Step of the training : ac_gan, imageEncoder')
parser.add_argument('--retrain', type=int, default=0,
help='Set 0 for using pre-trained model, 1 for retraining the model')
args = parser.parse_args()
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.sample_dir):
os.makedirs(FLAGS.sample_dir)
FLAGS.retrain = args.retrain == 1
if args.train_step == "ac_gan":
train_ac_gan()
elif args.train_step == "imageEncoder":
train_imageEncoder()
if __name__ == '__main__':
# load_data("celebA")
# tf.app.run()
main()