-
Notifications
You must be signed in to change notification settings - Fork 0
/
word2vec.py
269 lines (253 loc) · 11 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic word2vec example."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
from tempfile import gettempdir
import json
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import matplotlib as mpl
# mpl.rcParams['font.sans-serif'] = ['SimHei']
# mpl.rcParams['font.serif'] = ['SimHei']
# import seaborn as sns
# sns.set_style("darkgrid", {"font.sans-serif": ['simhei', 'Arial']})
# Read the data into a list of strings.
with open('QuanSongci.txt', 'r', encoding='utf-8') as f:
vocabulary = f.read()
print('Data size', len(vocabulary))
# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 5000
def build_dataset(words, n_words):
"""Process raw inputs into a dataset."""
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(n_words - 1))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
index = dictionary.get(word, 0) # 第二个参数是当指定键不存在时,则返回默认的值
if index == 0: # dictionary['UNK']
unk_count += 1
data.append(index)
count[0][1] = unk_count
reversed_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reversed_dictionary
# 生成四个全局变量:
# data - 用字符所对应的序号来代替原有的文本.
# count - 字符出现次数的一个列表映射
# dictionary - 字符与其对应的索引号的映射
# reverse_dictionary - 字符与其对应的索引号的逆映射
data, count, dictionary, reverse_dictionary = build_dataset(vocabulary,
vocabulary_size)
print('--------save dictionary-----------------')
with open('E:\\ailearning\\word_writer\\dictionary_new.json', 'w', encoding='utf-8') as f:
json.dump(dictionary, f)
with open('E:\\ailearning\\word_writer\\reversed_dictionary.json', 'w', encoding='utf-8') as f:
json.dump(reverse_dictionary, f)
with open('E:\\ailearning\\word_writer\\data.json', 'w', encoding='utf-8') as f:
json.dump(data, f)
del vocabulary # Hint to reduce memory.
print('Top 20 frequency words (+UNK)', count[:20])
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
# def generate_batch(batch_size, num_skips, skip_window):
# global data_index
# assert batch_size % num_skips == 0
# assert num_skips <= 2 * skip_window
# batch = np.ndarray(shape=(batch_size), dtype=np.int32)
# labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
# span = 2 * skip_window + 1 # [ skip_window target skip_window ]
# buffer = collections.deque(maxlen=span)
# if data_index + span > len(data):
# data_index = 0
# buffer.extend(data[data_index:data_index + span])
# data_index += span
# for i in range(batch_size // num_skips):
# context_words = [w for w in range(span) if w != skip_window]
# words_to_use = random.sample(context_words, num_skips)
# for j, context_word in enumerate(words_to_use):
# batch[i * num_skips + j] = buffer[skip_window]
# labels[i * num_skips + j, 0] = buffer[context_word]
# # if data_index == len(data):
# # print('pause!')
# if data_index == len(data):
# buffer.clear()
# buffer.extend(data[:span])
# data_index = span
# else:
# buffer.append(data[data_index])
# data_index += 1
# # Backtrack a little bit to avoid skipping words in the end of a batch
# data_index = (data_index + len(data) - span) % len(data)
# return batch, labels
#
#
# batch, labels = generate_batch(batch_size=16, num_skips=2, skip_window=1)
# for i in range(16):
# print(batch[i], reverse_dictionary[batch[i]],
# '->', labels[i, 0], reverse_dictionary[labels[i, 0]])
#
# # Step 4: Build and train a skip-gram model.
#
# batch_size = 128
# embedding_size = 128 # Dimension of the embedding vector.
# skip_window = 1 # How many words to consider left and right.
# num_skips = 2 # How many times to reuse an input to generate a label.
# num_sampled = 64 # Number of negative examples to sample.
#
# # We pick a random validation set to sample nearest neighbors. Here we limit the
# # validation samples to the words that have a low numeric ID, which by
# # construction are also the most frequent. These 3 variables are used only for
# # displaying model accuracy, they don't affect calculation.
# valid_size = 16 # Random set of words to evaluate similarity on.
# valid_window = 100 # Only pick dev samples in the head of the distribution.
# valid_examples = np.random.choice(valid_window, valid_size, replace=False)
#
# graph = tf.Graph()
#
# with graph.as_default():
# # Input data.
# train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
# train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
# valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
#
# # Ops and variables pinned to the CPU because of missing GPU implementation
# with tf.device('/cpu:0'):
# # Look up embeddings for inputs.
# embeddings = tf.Variable(
# tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
# embed = tf.nn.embedding_lookup(embeddings, train_inputs)
#
# # Construct the variables for the NCE loss
# nce_weights = tf.Variable(
# tf.truncated_normal([vocabulary_size, embedding_size],
# stddev=1.0 / math.sqrt(embedding_size)))
# nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
#
# # Compute the average NCE loss for the batch.
# # tf.nce_loss automatically draws a new sample of the negative labels each
# # time we evaluate the loss.
# # Explanation of the meaning of NCE loss:
# # http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
# loss = tf.reduce_mean(
# tf.nn.nce_loss(weights=nce_weights,
# biases=nce_biases,
# labels=train_labels,
# inputs=embed,
# num_sampled=num_sampled,
# num_classes=vocabulary_size))
#
# # Construct the SGD optimizer using a learning rate of 1.0.
# optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
#
# # Compute the cosine similarity between minibatch examples and all embeddings.
# norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
# normalized_embeddings = embeddings / norm
# valid_embeddings = tf.nn.embedding_lookup(
# normalized_embeddings, valid_dataset)
# similarity = tf.matmul(
# valid_embeddings, normalized_embeddings, transpose_b=True)
#
# # Add variable initializer.
# init = tf.global_variables_initializer()
#
# # Step 5: Begin training.
# num_steps = 800001
#
# with tf.Session(graph=graph) as session:
# # We must initialize all variables before we use them.
# init.run()
# print('Initialized')
#
# average_loss = 0
# for step in range(num_steps):
# batch_inputs, batch_labels = generate_batch(
# batch_size, num_skips, skip_window)
# feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
#
# # We perform one update step by evaluating the optimizer op (including it
# # in the list of returned values for session.run()
# _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
# average_loss += loss_val
#
# if step % 2000 == 0:
# if step > 0:
# average_loss /= 2000
# # The average loss is an estimate of the loss over the last 2000 batches.
# print('Average loss at step ', step, ': ', average_loss)
# average_loss = 0
#
# # Note that this is expensive (~20% slowdown if computed every 500 steps)
# if step % 10000 == 0:
# sim = similarity.eval()
# for i in range(valid_size):
# valid_word = reverse_dictionary[valid_examples[i]]
# top_k = 8 # number of nearest neighbors
# nearest = (-sim[i, :]).argsort()[1:top_k + 1]
# log_str = 'Nearest to %s:' % valid_word
# for k in range(top_k):
# close_word = reverse_dictionary[nearest[k]]
# log_str = '%s %s,' % (log_str, close_word)
# print(log_str)
# final_embeddings = normalized_embeddings.eval()
# np.save('embedding.npy', final_embeddings)
#
#
# # Step 6: Visualize the embeddings.
#
#
# # pylint: disable=missing-docstring
# # Function to draw visualization of distance between embeddings.
# def plot_with_labels(low_dim_embs, labels, filename):
# assert low_dim_embs.shape[0] >= len(labels), 'More labels than embeddings'
# plt.figure(figsize=(18, 18)) # in inches
# for i, label in enumerate(labels):
# x, y = low_dim_embs[i, :]
# plt.scatter(x, y)
# plt.annotate(label,
# xy=(x, y),
# xytext=(5, 2),
# textcoords='offset points',
# ha='right',
# va='bottom')
#
# plt.savefig(filename)
#
#
# try:
# # pylint: disable=g-import-not-at-top
# from sklearn.manifold import TSNE
# import matplotlib.pyplot as plt
#
# print('begin to plot picture~')
# tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact')
# plot_only = 500
# low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only, :])
# labels = [reverse_dictionary[i] for i in range(plot_only)]
# plot_with_labels(low_dim_embs, labels, os.path.join(gettempdir(), 'E:\\ailearning\\word_writer\\tsne.png'))
#
# except ImportError as ex:
# print('Please install sklearn, matplotlib, and scipy to show embeddings.')
# print(ex)