forked from ShishirPatil/gorilla
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraft.py
606 lines (509 loc) · 28.7 KB
/
raft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
from mdc import MDC
from tqdm import tqdm
from logconf import log_setup
import logging
from typing import Literal, Any, get_args
import argparse
from openai import OpenAI, BadRequestError
import datasets
from datasets import Dataset, concatenate_datasets
import pyarrow as pa
from transformers import AutoTokenizer
import json
import PyPDF2
import random
from langchain_experimental.text_splitter import SemanticChunker
from langchain_openai.embeddings import OpenAIEmbeddings
from client_utils import build_openai_client, build_langchain_embeddings, UsageStats, ChatCompleter
from math import ceil
from format import DatasetConverter, datasetFormats, outputDatasetTypes
from pathlib import Path
from dotenv import load_dotenv
from checkpointing import Checkpointing, checkpointed
import uuid
import shutil
from threading import Thread, Event
log_setup()
load_dotenv() # take environment variables from .env.
logger = logging.getLogger("raft")
DocType = Literal["api", "pdf", "json", "txt"]
docTypes = list(get_args(DocType))
SystemPromptKey = Literal["gpt", "llama"]
systemPromptKeys = list(get_args(SystemPromptKey))
def get_args() -> argparse.Namespace:
"""
Parses and returns the arguments specified by the user's command
"""
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--datapath", type=Path, default="", help="If a file, the path at which the document is located. If a folder, the path at which to load all documents")
parser.add_argument("--output", type=str, default="./", help="The path at which to save the dataset")
parser.add_argument("--output-format", type=str, default="hf", help="The format of the output dataset.", choices=datasetFormats)
parser.add_argument("--output-type", type=str, default="jsonl", help="Type to export the dataset to. Defaults to jsonl.", choices=outputDatasetTypes)
parser.add_argument("--output-chat-system-prompt", type=str, help="The system prompt to use when the output format is chat")
parser.add_argument("--output-completion-prompt-column", type=str, default="prompt", help="The prompt column name to use for the completion format")
parser.add_argument("--output-completion-completion-column", type=str, default="completion", help="The completion column name to use for the completion format")
parser.add_argument("--distractors", type=int, default=3, help="The number of distractor documents to include per data point / triplet")
parser.add_argument("--p", type=float, default=1.0, help="The percentage that the oracle document is included in the context")
parser.add_argument("--questions", type=int, default=5, help="The number of data points / triplets to generate per chunk")
parser.add_argument("--chunk_size", type=int, default=512, help="The size of each chunk in number of tokens")
parser.add_argument("--doctype", type=str, default="pdf", help="The type of the document, must be one of the accepted doctypes", choices=docTypes)
parser.add_argument("--openai_key", type=str, default=None, help="Your OpenAI key used to make queries to GPT-3.5 or GPT-4")
parser.add_argument("--embedding_model", type=str, default="text-embedding-ada-002", help="The embedding model to use to encode documents chunks (text-embedding-ada-002, ...)")
parser.add_argument("--completion_model", type=str, default="gpt-4", help="The model to use to generate questions and answers (gpt-3.5, gpt-4, ...)")
parser.add_argument("--system-prompt-key", default="gpt", help="The system prompt to use to generate the dataset", choices=systemPromptKeys)
parser.add_argument("--workers", type=int, default=2, help="The number of worker threads to use to generate the dataset")
parser.add_argument("--auto-clean-checkpoints", type=bool, default=False, help="Whether to auto clean the checkpoints after the dataset is generated")
parser.add_argument("--qa-threshold", type=int, default=None, help="The number of Q/A samples to generate after which to stop the generation process. Defaults to None, which means generating Q/A samples for all documents")
args = parser.parse_args()
return args
def get_chunks(
data_path: Path,
doctype: DocType = "pdf",
chunk_size: int = 512,
openai_key: str | None = None,
model: str = None
) -> list[str]:
"""
Takes in a `data_path` and `doctype`, retrieves the document, breaks it down into chunks of size
`chunk_size`, and returns the chunks.
"""
chunks = []
logger.info(f"Retrieving chunks from {data_path} of type {doctype} using the {model} model.")
if doctype == "api":
with open(data_path) as f:
api_docs_json = json.load(f)
chunks = list(api_docs_json)
chunks = [str(api_doc_json) for api_doc_json in api_docs_json]
for field in ["user_name", "api_name", "api_call", "api_version", "api_arguments", "functionality"]:
if field not in chunks[0]:
raise TypeError(f"API documentation is not in the format specified by the Gorilla API Store: Missing field `{field}`")
else:
embeddings = build_langchain_embeddings(openai_api_key=openai_key, model=model)
chunks = []
file_paths = [data_path]
if data_path.is_dir():
file_paths = list(data_path.rglob('**/*.' + doctype))
futures = []
with tqdm(total=len(file_paths), desc="Chunking", unit="file") as pbar:
with ThreadPoolExecutor(max_workers=2) as executor:
for file_path in file_paths:
futures.append(executor.submit(get_doc_chunks, embeddings, file_path, doctype, chunk_size))
for future in as_completed(futures):
doc_chunks = future.result()
chunks.extend(doc_chunks)
pbar.set_postfix({'chunks': len(chunks)})
pbar.update(1)
return chunks
def get_doc_chunks(
embeddings: OpenAIEmbeddings,
file_path: Path,
doctype: DocType = "pdf",
chunk_size: int = 512,
) -> list[str]:
if doctype == "json":
with open(file_path, 'r') as f:
data = json.load(f)
text = data["text"]
elif doctype == "pdf":
text = ""
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
num_pages = len(reader.pages)
for page_num in range(num_pages):
page = reader.pages[page_num]
text += page.extract_text()
elif doctype == "txt":
with open(file_path, 'r') as file:
data = file.read()
text = str(data)
else:
raise TypeError("Document is not one of the accepted types: api, pdf, json, txt")
num_chunks = ceil(len(text) / chunk_size)
logger.debug(f"Splitting text into {num_chunks} chunks.")
text_splitter = SemanticChunker(embeddings, number_of_chunks=num_chunks)
chunks = text_splitter.create_documents([text])
chunks = [chunk.page_content for chunk in chunks]
return chunks
def generate_chunk_instructions(chat_completer: ChatCompleter, chunk: Any, x=5, model: str = None) -> list[str]:
"""
Generates `x` questions / use cases for `api_call`. Used when the input document is of type `api`.
"""
response = chat_completer(
model=model,
messages=[
{"role": "system", "content": "You are a synthetic instruction-api pair generator. Given an API endpoint in the form of a JSON object, generate %s example queries of instructions a user could ask and would be answered by invoking the API call. For example, if the given API call is the `service.users().getProfile(userId='me').execute()` call from the Gmail API, an example query could be 'How can I fetch my Gmail account's email address?'" % (x)},
{"role": "system", "content": "The API endpoint is a JSON object with required params: user_name, api_name, api_call, api_version, api_arguments, functionality, and optional params: env_requirements, example_code, meta_data, Questions"},
{"role": "system", "content": "For instance, if the api call contains: {'user_name': 'felixzhu555', 'api_name': 'Google Maps - Address Validation', 'api_call': 'Client.addressvalidation(addressLines, regionCode=region_code, locality=locality, enableUspsCass=boolean)', 'api_version': '4.10.0', 'api_arguments': {}, 'functionality': 'Validate an address and its components, standardize the address for mailing, and determine the best known geocode for it.', 'env_requirements': ['googlemaps'], 'example_code': 'client = googlemaps.Client(key='YOUR_API_KEY')\nresponse = client.addressvalidation('1600 Amphitheatre Pk', regionCode='US', locality='Mountain View', enableUspsCass=True)', 'meta_data': {'description': 'The googlemaps python client is an abstraction for the Google Maps API that requires python 3.5+. Each Google Maps web service request requires an API key or client ID. API keys are generated in the 'Credentials' page of the 'APIs & Services' tab of Google Cloud console. This key should be kept secret on your server.'}, 'questions': []}, an example instruction would be 'Validate the following address: University Avenue and, Oxford St, Berkeley, CA 94720.'"},
{"role": "system", "content": "Don't mention 'API' or use any hints or the name of the API. In one-third of the queries, make sure to include a specific example, like 'Validate this address: 123 Harrison St, Oakland CA'. Include ONLY the queries in your response."},
{"role": "user", "content": str(chunk)}
]
)
content = response.choices[0].message.content
queries = content.split('\n')
queries = [strip_str(q) for q in queries]
queries = [q for q in queries if any(c.isalpha() for c in q)]
return queries
build_qa_messages = {
"gpt": lambda chunk, x : [
{"role": "system", "content": """You are a synthetic question-answer pair generator. Given a chunk of context about
some topic(s), generate %s example questions a user could ask and would be answered using information from the chunk.
For example, if the given context was a Wikipedia paragraph about the United States, an example question could be
'How many states are in the United States?'""" % (x)},
{"role": "system", "content": "The questions should be able to be answered in a few words or less. Include only the questions in your response."},
{"role": "user", "content": str(chunk)}
],
"llama": lambda chunk, x : [
{"role": "system", "content":
"""You are a synthetic question generator.
Instructions:
- Given a chunk of context about some topic(s), generate %s example questions a user could ask
- Questions should be answerable using only information from the chunk.
- Generate one question per line
- Generate only questions
- Questions should be succinct
Here are some samples:
Context: A Wikipedia paragraph about the United States,
Question: How many states are in the United States?
Context: A Wikipedia paragraph about vampire bats,
Question: What are the different species of vampire bats?
""" % (x)},
{"role": "system", "content": "The questions should be able to be answered in a few words or less. Include only the questions in your response."},
{"role": "user", "content": str(chunk)}
]
}
def generate_instructions_gen(chat_completer: ChatCompleter, chunk: Any, x: int = 5, model: str = None, prompt_key : str = "gpt") -> list[str]:
"""
Generates `x` questions / use cases for `chunk`. Used when the input document is of general types
`pdf`, `json`, or `txt`.
"""
try:
response = chat_completer(
model=model,
messages=build_qa_messages[prompt_key](chunk, x),
max_tokens=min(25 * x, 512), # 25 tokens per question
)
except BadRequestError as e:
if e.code == "content_filter":
logger.warning(f"Got content filter error, skipping chunk: {e.message}")
return []
raise e
content = response.choices[0].message.content
queries = content.split('\n') if content else []
#queries = [strip_str(q) for q in queries]
queries = [q for q in queries if any(c.isalpha() for c in q)]
return queries
def strip_str(s: str) -> str:
"""
Helper function for helping format strings returned by GPT-4.
"""
l, r = 0, len(s)-1
beg_found = False
for i in range(len(s)):
if s[i].isalpha():
if not beg_found:
l = i
beg_found = True
else:
r = i
r += 2
return s[l:min(r, len(s))]
def encode_question(question: str, api: Any) -> list[str]:
"""
Encode multiple prompt instructions into a single string for the `api` case.
"""
prompts = []
prompt = question + "\nWrite a python program to call API in " + str(api) + ".\n\nThe answer should follow the format: <<<domain>>> $DOMAIN \n, <<<api_call>>>: $API_CALL \n, <<<api_provider>>>: $API_PROVIDER \n, <<<explanation>>>: $EXPLANATION \n, <<<code>>>: $CODE}. Here are the requirements:\n \n2. The $DOMAIN should be the domain of the API ('N/A' if unknown). The $API_CALL should have only 1 line of code that calls api.\n3. The $API_PROVIDER should be the programming framework used.\n4. $EXPLANATION should be a numbered, step-by-step explanation.\n5. The $CODE is the python code.\n6. Do not repeat the format in your answer."
prompts.append({"role": "system", "content": "You are a helpful API writer who can write APIs based on requirements."})
prompts.append({"role": "user", "content": prompt})
return prompts
prompt_templates = {
"gpt": """
Question: {question}\nContext: {context}\n
Answer this question using the information given in the context above. Here is things to pay attention to:
- First provide step-by-step reasoning on how to answer the question.
- In the reasoning, if you need to copy paste some sentences from the context, include them in ##begin_quote## and ##end_quote##. This would mean that things outside of ##begin_quote## and ##end_quote## are not directly copy paste from the context.
- End your response with final answer in the form <ANSWER>: $answer, the answer should be succinct.
You MUST begin your final answer with the tag "<ANSWER>:".
""",
"llama": """
Question: {question}
Context: {context}
Answer this question using the information given in the context above.
Instructions:
- Provide step-by-step reasoning on how to answer the question.
- Explain which parts of the context are meaningful and why.
- Copy paste the relevant sentences from the context in ##begin_quote## and ##end_quote##.
- Provide a summary of how you reached your answer.
- End your response with the final answer in the form <ANSWER>: $answer, the answer should be succinct.
- You MUST begin your final answer with the tag "<ANSWER>:".
Here are some samples:
Example question: What movement did the arrest of Jack Weinberg in Sproul Plaza give rise to?
Example answer: To answer the question, we need to identify the movement that was sparked by the arrest of Jack Weinberg in Sproul Plaza.
The context provided gives us the necessary information to determine this.
First, we look for the part of the context that directly mentions Jack Weinberg's arrest.
We find it in the sentence: ##begin_quote##The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE,
prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement##end_quote##.
From this sentence, we understand that the arrest of Jack Weinberg led to student-led acts which then gave rise to a specific movement.
The name of the movement is explicitly mentioned in the same sentence as the "Free Speech Movement."
Therefore, based on the context provided, we can conclude that the arrest of Jack Weinberg in Sproul Plaza gave rise to the Free Speech Movement.
<ANSWER>: Free Speech Movement
"""
}
def encode_question_gen(question: str, chunk: Any, prompt_key : str = "gpt") -> list[str]:
"""
Encode multiple prompt instructions into a single string for the general case (`pdf`, `json`, or `txt`).
"""
prompts = []
prompt = prompt_templates[prompt_key].format(question=question, context=str(chunk))
prompts.append({"role": "system", "content": "You are a helpful question answerer who can provide an answer given a question and relevant context."})
prompts.append({"role": "user", "content": prompt})
return prompts
def generate_label(chat_completer: ChatCompleter, question: str, context: Any, doctype: DocType = "pdf", model: str = None, prompt_key : str = "gpt") -> str | None:
"""
Generates the label / answer to `question` using `context` and GPT-4.
"""
question = encode_question(question, context) if doctype == "api" else encode_question_gen(question, context, prompt_key)
response = chat_completer(
model=model,
messages=question,
n=1,
temperature=0,
max_tokens=512,
)
response = response.choices[0].message.content
return response
def generate_question_cot_answer(
chat_completer: ChatCompleter,
chunks: list[str],
chunk: str,
chunk_id,
question,
doctype: DocType = "api",
num_distract: int = 3,
p: float = 0.8,
model: str = None,
prompt_key: str = "gpt",
):
datapt = {
"id": None,
"type": None,
"question": None,
"context": None,
"oracle_context": None,
"cot_answer": None
}
datapt["id"] = str(uuid.uuid4())
datapt["type"] = "api call" if doctype == "api" else "general"
datapt["question"] = question
# add num_distract distractor docs
docs = [chunk]
indices = list(range(0, len(chunks)))
indices.remove(chunk_id)
for j in random.sample(indices, num_distract):
docs.append(chunks[j])
# decides whether to add oracle document
oracle = random.uniform(0, 1) < p
if not oracle:
docs[0] = chunks[random.sample(indices, 1)[0]]
random.shuffle(docs)
d = {
"title": [],
"sentences": []
}
d["title"].append(["placeholder_title"]*(num_distract+1))
d["sentences"].append(docs)
datapt["context"] = d
datapt["oracle_context"] = chunk
# add answer to q
datapt["cot_answer"] = generate_label(chat_completer, question, chunk, doctype, model=model, prompt_key=prompt_key)
# construct model instruction
context = ""
for doc in docs:
context += "<DOCUMENT>" + str(doc) + "</DOCUMENT>\n"
context += question
datapt["instruction"] = context
return datapt
def build_or_load_chunks(
datapath: Path,
doctype: str,
CHUNK_SIZE: int,
OPENAPI_API_KEY: str,
embedding_model: str,
checkpoints_dir: Path,
):
"""
Builds chunks and checkpoints them if asked
"""
chunks_ds: Dataset = None
chunks = None
checkpoints_chunks_path = checkpoints_dir / "chunks"
logger.info(f"Using checkpoint chunks {checkpoints_chunks_path}")
if checkpoints_chunks_path.exists():
chunks_ds = Dataset.load_from_disk(checkpoints_chunks_path)
chunks = chunks_ds['chunk']
if not chunks:
chunks = get_chunks(datapath, doctype, CHUNK_SIZE, OPENAPI_API_KEY, model=embedding_model)
if not chunks_ds:
chunks_table = pa.table({ "chunk": chunks })
chunks_ds = Dataset(chunks_table)
chunks_ds.save_to_disk(checkpoints_chunks_path)
return chunks
def main():
main_start = time.time()
# run code
args = get_args()
# Validate arguments
if args.output_chat_system_prompt and args.output_format != "chat":
raise Exception("Parameter --output-chat-system-prompt can only be used with --output-format chat")
OPENAPI_API_KEY = args.openai_key
client = build_openai_client(
api_key=OPENAPI_API_KEY,
)
chat_completer = ChatCompleter(client)
CHUNK_SIZE = args.chunk_size
NUM_DISTRACT_DOCS = args.distractors
output_path = Path(args.output).absolute()
checkpoints_dir = Path(str(output_path) + "-checkpoints").absolute()
auto_clean_checkpoints = args.auto_clean_checkpoints
if auto_clean_checkpoints:
logger.info(f"Checkpoints will be automatically deleted after dataset generation. Remove --auto-clean-checkpoints to deactivate.")
datapath: Path = args.datapath
datasets.disable_progress_bars()
# Chunks
chunks = build_or_load_chunks(datapath, args.doctype, CHUNK_SIZE, OPENAPI_API_KEY, args.embedding_model, checkpoints_dir)
cot_answers_ds = None
num_chunks = len(chunks)
num_questions = args.questions
max_workers = args.workers
doctype = args.doctype
completion_model = args.completion_model
system_prompt_key = args.system_prompt_key
logger.info(f"Using system prompt key {system_prompt_key}")
logger.info(f"Using {max_workers} worker threads")
cot_answers_ds = stage_generate(chat_completer, checkpoints_dir, chunks, num_questions, max_workers, doctype, completion_model, system_prompt_key, num_distract=NUM_DISTRACT_DOCS, p=args.p, qa_threshold=args.qa_threshold)
# Save as .arrow format
datasets.enable_progress_bars()
cot_answers_ds.save_to_disk(str(output_path))
# Save as .jsonl format
formatter = DatasetConverter()
# Extract format specific params
format_params = {}
if args.output_chat_system_prompt:
format_params['system_prompt'] = args.output_chat_system_prompt
if args.output_format == "completion":
format_params['prompt_column'] = args.output_completion_prompt_column
format_params['completion_column'] = args.output_completion_completion_column
formatter.convert(ds=cot_answers_ds, format=args.output_format, output_path=str(output_path), output_type=args.output_type, params=format_params)
# Warning, this deletes all intermediary checkpoint files
if auto_clean_checkpoints:
shutil.rmtree(checkpoints_dir)
logger.info(f"Generated {len(cot_answers_ds)} question/answer/CoT/documents samples")
logger.info(f"Dataset saved to {output_path}")
logger.info(f"Done in {time.time() - main_start:.2f}s")
class StoppingException(Exception):
"""
Raised by worker threads when the process is stopping early
"""
pass
def stage_generate(chat_completer: ChatCompleter, checkpoints_dir, chunks, num_questions, max_workers, doctype, completion_model, system_prompt_key, num_distract, p, qa_threshold):
"""
Given a chunk, create {Q, A, D} triplets and add them to the dataset.
"""
questions_checkpointing = Checkpointing(checkpoints_dir / "questions")
answers_checkpointing = Checkpointing(checkpoints_dir / "answers")
num_chunks = len(chunks)
# Tracking when the process is stopping, so we can stop the generation process early
# Initial value is False
is_stopping = Event()
@checkpointed(questions_checkpointing)
def generate_chunk_instructions_ds(chunk: str, chunk_id: int, doctype: str, *args, **kwargs):
"""
Generates a dataset of instructions for a given chunk.
"""
questions = generate_chunk_instructions(chunk=chunk, *args, **kwargs) if doctype == "api" else generate_instructions_gen(chunk=chunk, *args, **kwargs)
chunk_question_pairs = [{"chunk": chunk, "chunk_id": chunk_id, "question": question} for question in questions]
questions_ds = Dataset.from_list(chunk_question_pairs)
return questions_ds
@checkpointed(answers_checkpointing)
def generate_question_cot_answers(questions_ds, chunk_id: int, chunk: str, *args, **kwargs):
def process_example(chunk, question):
try:
cot_answer = generate_question_cot_answer(chunk=chunk, chunk_id=chunk_id, chunks=chunks, question=question, *args, **kwargs)
except BadRequestError as e:
if e.code == "content_filter":
logger.warning(f"Got content filter error, skipping question '{question}': {e.message}")
return None
raise e
return cot_answer
results = [process_example(chunk, question) for chunk, question in zip(questions_ds['chunk'], questions_ds['question'])] if len(questions_ds) > 0 else []
results = [r for r in results if r is not None]
table = pa.Table.from_pylist(results)
ds = Dataset(table)
return ds
def process_chunk(i):
if is_stopping.is_set():
raise StoppingException()
chunk = chunks[i]
questions_ds = generate_chunk_instructions_ds(chunk=chunk, chunk_id=i, chat_completer=chat_completer, x=num_questions, model=completion_model, doctype=doctype, prompt_key=system_prompt_key)
answers_ds = generate_question_cot_answers(questions_ds=questions_ds, chunk=chunk, chunk_id=i, chat_completer=chat_completer, model=completion_model, doctype=doctype, prompt_key=system_prompt_key, num_distract=num_distract, p=p)
return answers_ds
futures = []
answers_ds_list = []
usage_stats = UsageStats()
# we use the checkpointing to keep track of the chunks that have already been processed
# the answers are generated after the questions so the process might have been stopped in between a batch of answers and matching questions
# so we need to use the answers checkpointing to keep track of which chunks we need to process
# if the questions for a given chunk have already been checkpointed, they will just be loaded from the checkpoint
# we set the tqdm's initial position to avoid having cached data skew the stats
missing_chunks = answers_checkpointing.missing_checkpoints(num_chunks)
gen_questions_count = 0
if answers_checkpointing.has_checkpoints():
ds = answers_checkpointing.collect_checkpoints()
gen_questions_count = len(ds)
done_chunks = num_chunks - len(missing_chunks)
if done_chunks > 0 or gen_questions_count > 0:
logger.info(f"Resuming generation from chunk {done_chunks}/{num_chunks} and {gen_questions_count} questions")
# If we have a QA threshold, it makes more sense to keep track of the number of questions generated
# Otherwise, track chunks
track_questions = qa_threshold is not None
if qa_threshold:
logger.info(f"Will stop early as soon as the QA threshold is met: {qa_threshold}")
if track_questions:
tqdm_args = {"total": qa_threshold, "unit": "qa", "initial": gen_questions_count}
else:
tqdm_args = {"total": num_chunks, "unit": "chunk", "initial": done_chunks}
tps = 0
with tqdm(desc="Generating", **tqdm_args) as pbar:
with ThreadPoolExecutor(max_workers=max_workers) as executor:
for i in missing_chunks:
futures.append(executor.submit(process_chunk, i))
for future in as_completed(futures):
if qa_threshold and gen_questions_count >= qa_threshold:
logger.info(f"Met threshold {gen_questions_count} >= {qa_threshold} questions, stopping generation")
is_stopping.set()
break
answers_ds = future.result()
answers_ds_list.append(answers_ds)
increment = min(len(answers_ds), qa_threshold - gen_questions_count) if track_questions else 1
gen_questions_count += len(answers_ds)
done_chunks += 1
stats = chat_completer.get_stats_and_reset()
if stats:
tps = stats.total_tokens / stats.duration
usage_stats += stats
postfix = {'last tok/s': tps, 'avg tok/s': usage_stats.total_tokens / usage_stats.duration if usage_stats.duration > 0 else 0}
if track_questions:
postfix['chunks'] = done_chunks
else:
postfix['qa'] = gen_questions_count
pbar.set_postfix(postfix)
pbar.update(increment)
ds = answers_checkpointing.collect_checkpoints()
ds = ds.select(range(qa_threshold)) if qa_threshold else ds
logger.info(f"Consumed {usage_stats.prompt_tokens} prompt tokens, {usage_stats.completion_tokens} completion tokens, {usage_stats.total_tokens} total tokens")
return ds
if __name__ == "__main__":
with MDC(progress="0%"):
main()