-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathCNNfeatures_Spatial.py
187 lines (163 loc) · 7.87 KB
/
CNNfeatures_Spatial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Extracting Video Spatial Features using model-based transfer learning"""
from argparse import ArgumentParser
import torch
from torchvision import transforms, models
import torch.nn as nn
from torch.utils.data import Dataset
import skvideo.io
from PIL import Image
import h5py
import numpy as np
import random
import time
import os
class VideoDataset(Dataset):
"""Read data from the original dataset for feature extraction"""
def __init__(self, videos_dir, video_names, score, video_format='RGB', width=None, height=None):
super(VideoDataset, self).__init__()
self.videos_dir = videos_dir
self.video_names = video_names
self.score = score
self.format = video_format
self.width = width
self.height = height
def __len__(self):
return len(self.video_names)
def __getitem__(self, idx):
video_name = self.video_names[idx]
assert self.format == 'YUV420' or self.format == 'RGB'
if self.format == 'YUV420':
video_data = skvideo.io.vread(os.path.join(self.videos_dir, video_name), self.height[idx], self.width[idx], inputdict={'-pix_fmt':'yuvj420p'})
else:
video_data = skvideo.io.vread(os.path.join(self.videos_dir, video_name))
video_score = self.score[idx]
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
video_length = video_data.shape[0]
video_channel = video_data.shape[3]
video_height = video_data.shape[1]
video_width = video_data.shape[2]
print('video_width: {} video_height: {}'.format(video_width, video_height))
transformed_video = torch.zeros([video_length, video_channel, video_height, video_width])
for frame_idx in range(video_length):
frame = video_data[frame_idx]
frame = Image.fromarray(frame)
frame = transform(frame)
transformed_video[frame_idx] = frame
sample = {'video': transformed_video, 'score': video_score}
return sample
class CNNModel(torch.nn.Module):
"""Modified CNN models for feature extraction"""
def __init__(self, model='ResNet-50'):
super(CNNModel, self).__init__()
if model == 'SpatialExtractor':
print("use SpatialExtractor")
from SpatialExtractor.get_spatialextractor_model import make_spatial_model
model = make_spatial_model()
self.features = nn.Sequential(*list(model.module.backbone.children())[:-2])
else:
print("use default ResNet-50")
self.features = nn.Sequential(*list(models.resnet50(pretrained=True).children())[:-2])
def forward(self, x):
x = self.features(x)
features_mean = nn.functional.adaptive_avg_pool2d(x, 1)
features_std = global_std_pool2d(x)
return features_mean, features_std
def global_std_pool2d(x):
"""2D global standard variation pooling"""
return torch.std(x.view(x.size()[0], x.size()[1], -1, 1), dim=2, keepdim=True)
def get_features(video_data, frame_batch_size=64, model='ResNet-50', device='cuda'):
"""feature extraction"""
extractor = CNNModel(model=model).to(device)
video_length = video_data.shape[0]
frame_start = 0
frame_end = frame_start + frame_batch_size
output1 = torch.Tensor().to(device)
output2 = torch.Tensor().to(device)
extractor.eval()
with torch.no_grad():
while frame_end < video_length:
batch = video_data[frame_start:frame_end].to(device)
features_mean, features_std = extractor(batch)
output1 = torch.cat((output1, features_mean), 0)
output2 = torch.cat((output2, features_std), 0)
frame_end += frame_batch_size
frame_start += frame_batch_size
last_batch = video_data[frame_start:video_length].to(device)
features_mean, features_std = extractor(last_batch)
output1 = torch.cat((output1, features_mean), 0)
output2 = torch.cat((output2, features_std), 0)
output = torch.cat((output1, output2), 1).squeeze()
if output.ndim == 1:
output = output.unsqueeze(0)
return output
if __name__ == "__main__":
parser = ArgumentParser(description='Extracting Video Spatial Features using model-based transfer learning')
parser.add_argument("--seed", type=int, default=19901116)
parser.add_argument('--database', default='CVD2014', type=str,
help='database name (default: CVD2014)')
parser.add_argument('--model', default='SpatialExtractor', type=str,
help='which pre-trained model used (default: ResNet-50)')
parser.add_argument('--frame_batch_size', type=int, default=64,
help='frame batch size for feature extraction (default: 64)')
parser.add_argument('--disable_gpu', action='store_true', help='flag whether to disable GPU')
parser.add_argument("--ith", type=int, default=0, help='start video id')
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(args.seed)
random.seed(args.seed)
torch.utils.backcompat.broadcast_warning.enabled = True
if args.database == 'KoNViD-1k':
videos_dir = 'KoNViD-1k/' # videos dir, e.g., ln -s /xxx/KoNViD-1k/ KoNViD-1k
features_dir = 'CNN_features_KoNViD-1k/SpatialFeature/' # features dir
datainfo = 'data/KoNViD-1kinfo.mat' # database info: video_names, scores; video format, width, height, index, ref_ids, max_len, etc.
if args.database == 'CVD2014':
videos_dir = 'CVD2014/'
features_dir = 'CNN_features_CVD2014/SpatialFeature/'
datainfo = 'data/CVD2014info.mat'
if args.database == 'LIVE-Qualcomm':
videos_dir = 'LIVE-Qualcomm/'
features_dir = 'CNN_features_LIVE-Qualcomm/SpatialFeature/'
datainfo = 'data/LIVE-Qualcomminfo.mat'
if args.database == 'LIVE-VQC':
videos_dir = 'LIVE-VQC/'
features_dir = 'CNN_features_LIVE-VQC/SpatialFeature/'
datainfo = 'data/LIVE-VQCinfo.mat'
if args.database == 'YouTube-UGC':
videos_dir = 'YouTube_UGC/'
features_dir = 'CNN_features_YouTube-UGC/SpatialFeature/'
datainfo = 'data/YouTube-UGCinfo.mat'
if args.database == 'LSVQ':
videos_dir = 'LSVQ/'
features_dir = 'CNN_features_LSVQ/SpatialFeature/'
datainfo = 'data/LSVQinfo.mat'
if not os.path.exists(features_dir):
os.makedirs(features_dir)
device = torch.device("cuda" if not args.disable_gpu and torch.cuda.is_available() else "cpu")
Info = h5py.File(datainfo, 'r')
video_names = [Info[Info['video_names'][0, :][i]][()].tobytes()[::2].decode() for i in range(len(Info['video_names'][0, :]))]
scores = Info['scores'][0, :]
video_format = Info['video_format'][()].tobytes()[::2].decode()
width = Info['widths'][0, :]
height = Info['heights'][0, :]
dataset = VideoDataset(videos_dir, video_names, scores, video_format, width, height)
max_len = 0
min_len = 100000
for i in range(args.ith, len(dataset)):
start = time.time()
current_data = dataset[i]
print('Video {} : length {}'.format(i, current_data['video'].shape[0]))
if max_len < current_data['video'].shape[0]:
max_len = current_data['video'].shape[0]
if min_len > current_data['video'].shape[0]:
min_len = current_data['video'].shape[0]
features = get_features(current_data['video'], args.frame_batch_size, args.model, device)
np.save(features_dir + str(i) + '_' + args.model +'_last_conv', features.to('cpu').numpy())
np.save(features_dir + str(i) + '_score', current_data['score'])
end = time.time()
print('{} seconds'.format(end-start))
print('Max length: {} Min length: {}'.format(max_len, min_len))