-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patheval_singledatabase_SVR.py
260 lines (236 loc) · 11.3 KB
/
eval_singledatabase_SVR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import warnings
import time
import scipy.stats
import scipy.io
from scipy.optimize import curve_fit
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import h5py
warnings.filterwarnings("ignore")
# ===========================================================================
# Here starts the main part of the script
#
'''======================== parameters ================================'''
model_name = 'SVR' # regression model
data_name = 'KoNViD-1k' # dataset name CVD2014 KoNViD-1k LIVE-Qualcomm LIVE-VQC YouTube-UGC LSVQ
algo_name = 'ResNet-50' # evaluated model
info_file = os.path.join('data', data_name+'info.mat')
feature_file = os.path.join('feature_mats', data_name, data_name+'_'+algo_name+'_feature.mat')
result_file = os.path.join('results_SVR', data_name+'_'+algo_name+'_performance.mat')
print("Evaluating algorithm {} with {} on dataset {} ...".format(algo_name,
model_name, data_name))
'''======================== read files =============================== '''
Info = h5py.File(info_file, 'r')
Y = np.asarray(Info['scores'][0, :], dtype=np.float)
X_mat = scipy.io.loadmat(feature_file)
X = np.asarray(X_mat['feats_mat'], dtype=np.float)
# X = np.asarray(X_mat['features'], dtype=np.float)
X[np.isnan(X)] = 0
X[np.isinf(X)] = 0
'''======================== Main Body ==========================='''
model_params_all_repeats = []
PLCC_all_repeats_test = []
SRCC_all_repeats_test = []
KRCC_all_repeats_test = []
RMSE_all_repeats_test = []
PLCC_all_repeats_train = []
SRCC_all_repeats_train = []
KRCC_all_repeats_train = []
RMSE_all_repeats_train = []
# #############################################################################
# Train classifiers
#
# For an initial search, a logarithmic grid with basis
# 10 is often helpful. Using a basis of 2, a finer
# tuning can be achieved but at a much higher cost.
#
if algo_name == 'CORNIA10K' or algo_name == 'HOSA':
C_range = [0.1, 1, 10]
gamma_range = [0.01, 0.1, 1]
else:
C_range = np.logspace(1, 10, 10, base=2)
gamma_range = np.logspace(-8, 1, 10, base=2)
params_grid = dict(gamma=gamma_range, C=C_range)
# 10 random splits
for i in range(0, 10):
print(i+1, 'th repeated 60-20-20 hold out')
t0 = time.time()
# parameters for each hold out
model_params_all = []
PLCC_all_train = []
SRCC_all_train = []
KRCC_all_train = []
RMSE_all_train = []
PLCC_all_test = []
SRCC_all_test = []
KRCC_all_test = []
RMSE_all_test = []
# Split data to test and validation sets randomly
index = Info['index']
index = index[:, i % index.shape[1]]
ref_ids = Info['ref_ids'][0, :]
index_train = index[0:int(0.6 * len(index))]
index_valid = index[int(0.6 * len(index)):int(0.8 * len(index))]
index_test = index[int(0.8 * len(index)):len(index)]
index_train_real = []
index_valid_real = []
index_test_real = []
for i in range(len(ref_ids)):
if ref_ids[i] in index_train:
index_train_real.append(i)
if ref_ids[i] in index_valid:
index_valid_real.append(i)
if ref_ids[i] in index_test:
index_test_real.append(i)
X_train = X[index_train_real, :]
Y_train = Y[index_train_real]
X_valid = X[index_valid_real, :]
Y_valid = Y[index_valid_real]
X_test = X[index_test_real, :]
Y_test = Y[index_test_real]
# Standard min-max normalization of features
scaler = MinMaxScaler().fit(X_train)
X_train = scaler.transform(X_train)
# Apply scaling
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)
# SVR grid search in the TRAINING SET ONLY
# grid search
for C in C_range:
for gamma in gamma_range:
model_params_all.append((C, gamma))
if algo_name == 'CORNIA10K' or algo_name == 'HOSA':
model = SVR(kernel='linear', gamma=gamma, C=C)
else:
model = SVR(kernel='rbf', gamma=gamma, C=C)
# Fit training set to the regression model
model.fit(X_train, Y_train)
# Predict MOS for the validation set
Y_valid_pred = model.predict(X_valid)
Y_train_pred = model.predict(X_train)
# define 4-parameter logistic regression
def logistic_func(X, bayta1, bayta2, bayta3, bayta4):
logisticPart = 1 + np.exp(np.negative(np.divide(X - bayta3, np.abs(bayta4))))
yhat = bayta2 + np.divide(bayta1 - bayta2, logisticPart)
return yhat
Y_valid = np.array(list(Y_valid), dtype=np.float)
Y_train = np.array(list(Y_train), dtype=np.float)
try:
# logistic regression
beta = [np.max(Y_valid), np.min(Y_valid), np.mean(Y_valid_pred), 0.5]
popt, _ = curve_fit(logistic_func, Y_valid_pred, Y_valid, p0=beta, maxfev=100000000)
Y_valid_pred_logistic = logistic_func(Y_valid_pred, *popt)
# logistic regression
beta = [np.max(Y_train), np.min(Y_train), np.mean(Y_train_pred), 0.5]
popt, _ = curve_fit(logistic_func, Y_train_pred, Y_train, p0=beta, maxfev=100000000)
Y_train_pred_logistic = logistic_func(Y_train_pred, *popt)
except:
raise Exception('Fitting logistic function time-out!!')
plcc_valid_tmp = scipy.stats.pearsonr(Y_valid, Y_valid_pred_logistic)[0]
rmse_valid_tmp = np.sqrt(mean_squared_error(Y_valid, Y_valid_pred_logistic))
srcc_valid_tmp = scipy.stats.spearmanr(Y_valid, Y_valid_pred)[0]
krcc_valid_tmp = scipy.stats.kendalltau(Y_valid, Y_valid_pred)[0]
plcc_train_tmp = scipy.stats.pearsonr(Y_train, Y_train_pred_logistic)[0]
rmse_train_tmp = np.sqrt(mean_squared_error(Y_train, Y_train_pred_logistic))
srcc_train_tmp = scipy.stats.spearmanr(Y_train, Y_train_pred)[0]
try:
krcc_train_tmp = scipy.stats.kendalltau(Y_train, Y_train_pred)[0]
except:
krcc_train_tmp = scipy.stats.kendalltau(Y_train, Y_train_pred, method='asymptotic')[0]
# save results
PLCC_all_test.append(plcc_valid_tmp)
RMSE_all_test.append(rmse_valid_tmp)
SRCC_all_test.append(srcc_valid_tmp)
KRCC_all_test.append(krcc_valid_tmp)
PLCC_all_train.append(plcc_train_tmp)
RMSE_all_train.append(rmse_train_tmp)
SRCC_all_train.append(srcc_train_tmp)
KRCC_all_train.append(krcc_train_tmp)
# using the best chosen parameters to test on testing set
param_idx = np.argmax(np.asarray(SRCC_all_test, dtype=np.float))
C_opt, gamma_opt = model_params_all[param_idx]
if algo_name == 'CORNIA10K' or algo_name == 'HOSA':
model = SVR(kernel='linear', gamma=gamma_opt, C=C_opt)
else:
model = SVR(kernel='rbf', gamma=gamma_opt, C=C_opt)
# Fit training set to the regression model
model.fit(X_train, Y_train)
# Predict MOS for the test set
Y_test_pred = model.predict(X_test)
Y_train_pred = model.predict(X_train)
Y_test = np.array(list(Y_test), dtype=np.float)
Y_train = np.array(list(Y_train), dtype=np.float)
try:
# logistic regression
beta = [np.max(Y_test), np.min(Y_test), np.mean(Y_test_pred), 0.5]
popt, _ = curve_fit(logistic_func, Y_test_pred, Y_test, p0=beta, maxfev=100000000)
Y_test_pred_logistic = logistic_func(Y_test_pred, *popt)
# logistic regression
beta = [np.max(Y_train), np.min(Y_train), np.mean(Y_train_pred), 0.5]
popt, _ = curve_fit(logistic_func, Y_train_pred, Y_train, p0=beta, maxfev=100000000)
Y_train_pred_logistic = logistic_func(Y_train_pred, *popt)
except:
raise Exception('Fitting logistic function time-out!!')
plcc_test_opt = scipy.stats.pearsonr(Y_test, Y_test_pred_logistic)[0]
rmse_test_opt = np.sqrt(mean_squared_error(Y_test, Y_test_pred_logistic))
srcc_test_opt = scipy.stats.spearmanr(Y_test, Y_test_pred)[0]
krcc_test_opt = scipy.stats.kendalltau(Y_test, Y_test_pred)[0]
plcc_train_opt = scipy.stats.pearsonr(Y_train, Y_train_pred_logistic)[0]
rmse_train_opt = np.sqrt(mean_squared_error(Y_train, Y_train_pred_logistic))
srcc_train_opt = scipy.stats.spearmanr(Y_train, Y_train_pred)[0]
krcc_train_opt = scipy.stats.kendalltau(Y_train, Y_train_pred)[0]
model_params_all_repeats.append((C_opt, gamma_opt))
SRCC_all_repeats_test.append(srcc_test_opt)
KRCC_all_repeats_test.append(krcc_test_opt)
PLCC_all_repeats_test.append(plcc_test_opt)
RMSE_all_repeats_test.append(rmse_test_opt)
SRCC_all_repeats_train.append(srcc_train_opt)
KRCC_all_repeats_train.append(krcc_train_opt)
PLCC_all_repeats_train.append(plcc_train_opt)
RMSE_all_repeats_train.append(rmse_train_opt)
# print results for each iteration
print('======================================================')
print('Best results in CV grid search in one split')
print('SRCC_train: ', srcc_train_opt)
print('KRCC_train: ', krcc_train_opt)
print('PLCC_train: ', plcc_train_opt)
print('RMSE_train: ', rmse_train_opt)
print('======================================================')
print('SRCC_test: ', srcc_test_opt)
print('KRCC_test: ', krcc_test_opt)
print('PLCC_test: ', plcc_test_opt)
print('RMSE_test: ', rmse_test_opt)
print('MODEL: ', (C_opt, gamma_opt))
print('======================================================')
print(' -- ' + str(time.time()-t0) + ' seconds elapsed...\n\n')
print('\n\n')
# print('======================================================')
# print('Median training results among all repeated 60-20-20 holdouts:')
# print('SRCC: ',np.median(SRCC_all_repeats_train),'( std:',np.std(SRCC_all_repeats_train),')')
# print('KRCC: ',np.median(KRCC_all_repeats_train),'( std:',np.std(KRCC_all_repeats_train),')')
# print('PLCC: ',np.median(PLCC_all_repeats_train),'( std:',np.std(PLCC_all_repeats_train),')')
# print('RMSE: ',np.median(RMSE_all_repeats_train),'( std:',np.std(RMSE_all_repeats_train),')')
# print('======================================================')
print('Median testing results among all repeated 60-20-20 holdouts:')
print('SRCC: ',np.median(SRCC_all_repeats_test),'( std:',np.std(SRCC_all_repeats_test),')')
# print('KRCC: ',np.median(KRCC_all_repeats_test),'( std:',np.std(KRCC_all_repeats_test),')')
print('PLCC: ',np.median(PLCC_all_repeats_test),'( std:',np.std(PLCC_all_repeats_test),')')
# print('RMSE: ',np.median(RMSE_all_repeats_test),'( std:',np.std(RMSE_all_repeats_test),')')
print('======================================================')
print('\n\n')
#================================================================================
# save mats
scipy.io.savemat(result_file, \
mdict={'SRCC_train': np.asarray(SRCC_all_repeats_train,dtype=np.float), \
'KRCC_train': np.asarray(KRCC_all_repeats_train,dtype=np.float), \
'PLCC_train': np.asarray(PLCC_all_repeats_train,dtype=np.float), \
'RMSE_train': np.asarray(RMSE_all_repeats_train,dtype=np.float), \
'SRCC_test': np.asarray(SRCC_all_repeats_test,dtype=np.float), \
'KRCC_test': np.asarray(KRCC_all_repeats_test,dtype=np.float), \
'PLCC_test': np.asarray(PLCC_all_repeats_test,dtype=np.float), \
'RMSE_test': np.asarray(RMSE_all_repeats_test,dtype=np.float),\
})
a = 1