-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpreprocess.py
88 lines (70 loc) · 3.11 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# These code is adapted from https://github.com/dreamgaussian/dreamgaussian/blob/main/process.py
# The original code is licensed under the MIT License.
import os
import glob
import sys
import cv2
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import rembg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str, help="path to image (png, jpeg, etc.)")
parser.add_argument('--model', default='u2net', type=str, help="rembg model, see https://github.com/danielgatis/rembg#models")
parser.add_argument('--size', default=224, type=int, help="output resolution")
parser.add_argument('--border_ratio', default=0.2, type=float, help="output border ratio")
parser.add_argument('--recenter', type=bool, default=True, help="recenter, potentially not helpful for multiview zero123")
opt = parser.parse_args()
session = rembg.new_session(model_name=opt.model)
if os.path.isdir(opt.path):
print(f'[INFO] processing directory {opt.path}...')
files = glob.glob(f'{opt.path}/*')
else: # isfile
files = [opt.path]
out_dir = "./my_examples"
out_images_dir = os.path.join(out_dir, 'images')
out_masks_dir = os.path.join(out_dir, 'masks')
os.makedirs(out_dir, exist_ok=True)
os.makedirs(out_images_dir, exist_ok=True)
os.makedirs(out_masks_dir, exist_ok=True)
for file in files:
out_base = os.path.basename(file).split('.')[0]
out_rgba = os.path.join(out_images_dir, out_base + '.png')
out_mask = os.path.join(out_masks_dir, out_base + '.png')
# load image
print(f'[INFO] loading image {file}...')
image = cv2.imread(file, cv2.IMREAD_UNCHANGED)
# carve background
print(f'[INFO] background removal...')
carved_image = rembg.remove(image, session=session) # [H, W, 4]
mask = carved_image[..., -1] > 0
# recenter
if opt.recenter:
print(f'[INFO] recenter...')
final_rgba = np.zeros((opt.size, opt.size, 4), dtype=np.uint8)
coords = np.nonzero(mask)
x_min, x_max = coords[0].min(), coords[0].max()
y_min, y_max = coords[1].min(), coords[1].max()
h = x_max - x_min
w = y_max - y_min
desired_size = int(opt.size * (1 - opt.border_ratio))
scale = desired_size / max(h, w)
h2 = int(h * scale)
w2 = int(w * scale)
x2_min = (opt.size - h2) // 2
x2_max = x2_min + h2
y2_min = (opt.size - w2) // 2
y2_max = y2_min + w2
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
else:
final_rgba = carved_image
final_mask = (final_rgba[..., -1] > 0).astype(np.uint8) * 255
# write image
cv2.imwrite(out_rgba, final_rgba)
cv2.imwrite(out_mask, final_mask)