The lossy Geometry-based Point Cloud Compression (G-PCC) inevitably impairs the geometry information of point clouds, which deteriorates the quality of experience (QoE) in reconstruction and/or misleads decisions in tasks such as classification. To tackle it, this work proposes GRNet for the geometry restoration of G-PCC compressed large-scale point clouds.
- 2023.11.27 Our paper has been accepted by TVCG. [paper]
- python3.7 or 3.8
- cuda10.2 or 11.0
- pytorch1.7 or 1.8
- MinkowskiEngine 0.5 or higher (for sparse convolution)
- tmc3 v21 (for G-PCC compression) https://github.com/MPEGGroup/mpeg-pcc-tmc13
We recommend you to follow https://github.com/NVIDIA/MinkowskiEngine to setup the environment for sparse convolution.
TODO
chmod a+x ./tmc3
python test_solid.py --ckpts='ckpts_path' --GT_dir='GT_path' --last_kernel_size= --resolution= --posQuantscale=
python test_dense.py --ckpts='ckpts_path' --GT_dir='GT_path' --last_kernel_size= --resolution= --posQuantscale=
python test_dense_offset.py --ckpts='ckpts_path' --GT_dir='GT_path' --resolution= --posQuantscale=
python test_sparse.py --ckpts='ckpts_path' --GT_dir='GT_path' --resolution= --posQuantscale=