Convert NVIDIA HDR screenshots (JXR format) to JPEG with advanced AI enhancement and tone mapping.
- Convert NVIDIA JXR (HDR) screenshots to JPEG format
- Advanced HDR tone mapping with multiple algorithms
- AI-powered color enhancement using deep learning models
- Batch processing support
- Live preview with histogram visualization
- Neural network-based color correction using VGG16, ResNet34, and DenseNet121
- Edge preservation and enhancement using CBAM attention
- Adaptive color balancing
- Intelligent contrast adjustment
- Natural color preservation
- Adaptive (Default) - Automatically selects the best algorithm based on image content
- Hable
- Reinhard
- Filmic
- ACES
- Uncharted 2
- Modern, dark-themed GUI
- Real-time preview with before/after comparison
- Color histogram visualization
- Progress tracking for batch operations
- Customizable enhancement parameters
torch==2.5.1
torchvision==0.16.1
Pillow==10.2.0
numpy==1.26.4
matplotlib==3.9.3
imagecodecs==2024.9.22
TKinterModernThemes==1.10.4
-
Clone the repository:
git clone https://github.com/5ymph0en1x/NVIDIA-HDR-Converter-GUI.git cd NVIDIA-HDR-Converter-GUI
-
Install Python dependencies:
pip install -r requirements.txt
-
Run NHC.py
python NHC.py
- Launch the application
- Select "Single File" mode
- Choose input JXR file
- Select output JPEG location
- Adjust parameters as needed
- Click "Convert"
- Launch the application
- Select "Folder" mode
- Choose folder containing JXR files
- Adjust parameters as needed
- Click "Convert"
Note: Converted files will be saved in a "Converted_JPGs" subfolder
- Tone Map: Select HDR tone mapping algorithm
- Gamma: Adjust gamma correction
- Exposure: Control exposure adjustment
- AI Enhancement: Toggle AI-powered enhancement
- Edge Strength: Adjust edge enhancement intensity
- Ensemble of VGG16, ResNet34, and DenseNet121 for feature extraction
- Convolutional Block Attention Module (CBAM) for spatial and channel attention
- Edge enhancement block with Sobel filters
- Adaptive color balancing with preservation controls
- Multi-scale feature fusion
- Automatic CPU/GPU detection and switching
- Memory-efficient tensor operations
- Multi-threaded batch processing
- Progressive image loading
- Half-precision (FP16) support for GPU processing
- Uses PyTorch pretrained models (VGG16, ResNet34, DenseNet121)
- GUI theme based on TKinterModernThemes
- JXR decoding powered by imagecodecs library