forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[bugfix] interleaving sliding window for cohere2 model (vllm-project#…
…11583) Signed-off-by: youkaichao <[email protected]>
- Loading branch information
1 parent
09cf234
commit 2588355
Showing
7 changed files
with
206 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# ruff: noqa | ||
|
||
# Adapted from | ||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/cohere2/configuration_cohere2.py | ||
from transformers import PretrainedConfig | ||
from transformers.modeling_rope_utils import rope_config_validation | ||
|
||
|
||
class Cohere2Config(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere | ||
model according to the specified arguments, defining the model architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model. | ||
Args: | ||
vocab_size (`int`, *optional*, defaults to 256000): | ||
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`CohereModel`] | ||
hidden_size (`int`, *optional*, defaults to 8192): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 22528): | ||
Dimension of the MLP representations. | ||
logit_scale (`float`, *optional*, defaults to 0.0625): | ||
The scaling factor for the output logits. | ||
num_hidden_layers (`int`, *optional*, defaults to 40): | ||
Number of hidden layers in the Transformer decoder. | ||
num_attention_heads (`int`, *optional*, defaults to 64): | ||
Number of attention heads for each attention layer in the Transformer decoder. | ||
num_key_value_heads (`int`, *optional*): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | ||
`num_attention_heads`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 8192): | ||
The maximum sequence length that this model might ever be used with. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | ||
The epsilon used by the layer normalization. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
pad_token_id (`int`, *optional*, defaults to 0): | ||
Padding token id. | ||
bos_token_id (`int`, *optional*, defaults to 5): | ||
Beginning of stream token id. | ||
eos_token_id (`int`, *optional*, defaults to 255001): | ||
End of stream token id. | ||
tie_word_embeddings (`bool`, *optional*, defaults to `True`): | ||
Whether to tie weight embeddings | ||
rope_theta (`float`, *optional*, defaults to 10000.0): | ||
The base period of the RoPE embeddings. | ||
rope_scaling (`Dict`, *optional*): | ||
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | ||
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | ||
accordingly. | ||
Expected contents: | ||
`rope_type` (`str`): | ||
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | ||
'llama3'], with 'default' being the original RoPE implementation. | ||
`factor` (`float`, *optional*): | ||
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | ||
most scaling types, a `factor` of x will enable the model to handle sequences of length x * | ||
original maximum pre-trained length. | ||
`original_max_position_embeddings` (`int`, *optional*): | ||
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | ||
pretraining. | ||
`attention_factor` (`float`, *optional*): | ||
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | ||
computation. If unspecified, it defaults to value recommended by the implementation, using the | ||
`factor` field to infer the suggested value. | ||
`beta_fast` (`float`, *optional*): | ||
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | ||
ramp function. If unspecified, it defaults to 32. | ||
`beta_slow` (`float`, *optional*): | ||
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | ||
ramp function. If unspecified, it defaults to 1. | ||
`short_factor` (`List[float]`, *optional*): | ||
Only used with 'longrope'. The scaling factor to be applied to short contexts (< | ||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | ||
size divided by the number of attention heads divided by 2 | ||
`long_factor` (`List[float]`, *optional*): | ||
Only used with 'longrope'. The scaling factor to be applied to long contexts (< | ||
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | ||
size divided by the number of attention heads divided by 2 | ||
`low_freq_factor` (`float`, *optional*): | ||
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | ||
`high_freq_factor` (`float`, *optional*): | ||
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | ||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | ||
Whether to use a bias in the query, key, value and output projection layers during self-attention. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
sliding_window (`int`, *optional*, defaults to 4096): | ||
Size of the sliding window attention context. | ||
sliding_window_pattern (`int`, *optional*, defaults to 4): | ||
Pattern for the sliding window attention. | ||
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`. | ||
```python | ||
>>> from transformers import Cohere2Model, Cohere2Config | ||
>>> # Initializing a Cohere Nextmodel configuration | ||
>>> configuration = Cohere2Config() | ||
>>> # Initializing a model from the Cohere2 configuration | ||
>>> model = Cohere2Model(configuration) # doctest: +SKIP | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config # doctest: +SKIP | ||
``` | ||
""" | ||
|
||
model_type = "cohere2" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=256000, | ||
hidden_size=8192, | ||
intermediate_size=22528, | ||
logit_scale=0.0625, | ||
num_hidden_layers=40, | ||
num_attention_heads=64, | ||
num_key_value_heads=None, | ||
hidden_act="silu", | ||
max_position_embeddings=8192, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-5, | ||
use_cache=True, | ||
pad_token_id=0, | ||
bos_token_id=5, | ||
eos_token_id=255001, | ||
tie_word_embeddings=True, | ||
rope_theta=10000.0, | ||
rope_scaling=None, | ||
attention_bias=False, | ||
attention_dropout=0.0, | ||
sliding_window=4096, | ||
sliding_window_pattern=4, | ||
cache_implementation="hybrid", | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.hidden_size = hidden_size | ||
self.logit_scale = logit_scale | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
|
||
# for backward compatibility | ||
if num_key_value_heads is None: | ||
num_key_value_heads = num_attention_heads | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.use_cache = use_cache | ||
self.rope_theta = rope_theta | ||
self.rope_scaling = rope_scaling | ||
self.attention_bias = attention_bias | ||
self.attention_dropout = attention_dropout | ||
self.sliding_window = sliding_window | ||
self.sliding_window_pattern = sliding_window_pattern | ||
# Need to specify head_dim in the config so it can be used in the attention forward functions | ||
self.head_dim = hidden_size // num_attention_heads | ||
self.cache_implementation = cache_implementation | ||
|
||
# Validate the correctness of rotary position embeddings parameters | ||
rope_config_validation(self) | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
**kwargs, | ||
) | ||
|
||
|
||
__all__ = ["Cohere2Config"] |