Skip to content

customizable robust Independent Component Analysis (ICA)

License

Notifications You must be signed in to change notification settings

BahmanTahayori/robustica

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

robustica

robustica logo

Fully customizable robust Independent Component Analysis (ICA).

pipy License

Description

This package contains 3 modules:

  • RobustICA

    Defines the most important class that allows to perform and customize robust independent component analysis.

  • InferComponents

    Retrieves the number of components that explain a user-defined percentage of variance.

  • examples

    Contains handy functions to quickly create or access example datasets.

A more user-friendly documentation can be found at https://crg-cnag.github.io/robustica/.

Requirements

In brackets, versions of packages used to develop robustica.

  • numpy (1.19.2)
  • pandas (1.1.2)
  • scipy (1.6.2)
  • scikit-learn (0.23.2)
  • scikit-learn-extra (0.2.0)
  • joblib (1.0.1)
  • tqdm (4.59.0)

Installation

[required if numpy>2.0] scikit-learn-extra incompatibility

Install a forked version first to avoid incompatibility with the newest numpy (see #6 for more info on this).

pip install git+https://github.com/TimotheeMathieu/scikit-learn-extra

pip

pip install robustica

local (latest version)

git clone https://github.com/CRG-CNAG/robustica
cd robustica
pip install -e .

Usage

from robustica import RobustICA
from robustica.examples import make_sampledata

X = make_sampledata(ncol=300, nrow=2000, seed=123)

rica = RobustICA(n_components=10)
# note that by default, we use DBSCAN algorithm and the number of components can be smaller
# than the number of components defined.
S, A = rica.fit_transform(X)

# source matrix (nrow x n_components)
print(S.shape)
print(S)
(2000, 3) 
[[ 0.00975714  0.00619138  0.00502649]
 [-0.0021527  -0.0376857   0.0117938 ]
 [ 0.00046302  0.01712561  0.00518039]
 ...
 [ 0.00128344 -0.00767099  0.0047334 ]
 [ 0.00644422 -0.00498327  0.01325542]
 [ 0.0017873  -0.01739889 -0.00445954]]
# mixing matrix (ncol x n_components)
print(A.shape)
print(A)
(300, 3)
[[-1.79503194e-02 -1.05611924e+00  5.36688700e-01]
 [ 1.03342514e-01  7.43471382e-02  4.90472157e-01]
 [ 4.89753256e-01 -1.11300905e+00 -7.55809647e-01]
 ...
 [ 4.30468472e-01 -4.87992838e-01 -7.77965512e-01]
 [ 3.44078031e-02  4.09029805e-01 -7.29076312e-01]
 [ 2.15557427e-02  2.89301273e-01 -2.96690459e-01]]

Tutorials

Contact

This project has been fully developed at the Centre for Genomic Regulation within the group of Design of Biological Systems

Please, report any issues that you experience through this repository's "Issues" or email:

License

robustica is distributed under a BSD 3-Clause License (see LICENSE).

Citation

Anglada-Girotto, M., Miravet-Verde, S., Serrano, L., Head, S. A.. "robustica: customizable robust independent component analysis". BMC Bioinformatics 23, 519 (2022). DOI: https://doi.org/10.1186/s12859-022-05043-9

References

  • Himberg, J., & Hyvarinen, A. "Icasso: software for investigating the reliability of ICA estimates by clustering and visualization". IEEE XIII Workshop on Neural Networks for Signal Processing (2003). DOI: https://doi.org/10.1109/NNSP.2003.1318025
  • Sastry, Anand V., et al. "The Escherichia coli transcriptome mostly consists of independently regulated modules." Nature communications 10.1 (2019): 1-14. DOI: https://doi.org/10.1038/s41467-019-13483-w
  • Kairov, U., Cantini, L., Greco, A. et al. Determining the optimal number of independent components for reproducible transcriptomic data analysis. BMC Genomics 18, 712 (2017). DOI: https://doi.org/10.1186/s12864-017-4112-9

About

customizable robust Independent Component Analysis (ICA)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 85.6%
  • Python 14.4%