Skip to content

πŸ› οΈ Enterprise ML infrastructure and deployment tools. Comprehensive suite for ML lifecycle management with focus on GPU cluster optimization. πŸ“Š

License

Notifications You must be signed in to change notification settings

BjornMelin/mlops-toolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

MLOps Toolkit πŸ› οΈ

Python MLflow DVC Kubernetes License

Enterprise-grade ML infrastructure and deployment tools. Comprehensive suite of tools and implementations for managing ML lifecycle, experiments, and deployments.

Features β€’ Installation β€’ Quick Start β€’ Documentation β€’ Contributing

πŸ“‘ Table of Contents

✨ Features

  • Automated ML pipelines
  • Experiment tracking and versioning
  • Model registry and deployment
  • A/B testing framework
  • Monitoring and alerting
  • Feature store implementation

πŸ“ Project Structure

graph TD
    A[mlops-toolkit] --> B[pipelines]
    A --> C[monitoring]
    A --> D[registry]
    A --> E[deployment]
    B --> F[training]
    B --> G[evaluation]
    C --> H[metrics]
    C --> I[alerts]
    D --> J[models]
    D --> K[artifacts]
    E --> L[kubernetes]
    E --> M[serving]
Loading
Click to expand full directory structure
mlops-toolkit/
β”œβ”€β”€ pipelines/         # ML pipelines
β”‚   β”œβ”€β”€ training/     # Training pipelines
β”‚   └── evaluation/   # Evaluation pipelines
β”œβ”€β”€ monitoring/       # Monitoring suite
β”‚   β”œβ”€β”€ metrics/     # Metrics collection
β”‚   └── alerts/      # Alerting system
β”œβ”€β”€ registry/         # Model registry
β”œβ”€β”€ deployment/       # Deployment tools
β”œβ”€β”€ tests/           # Unit tests
└── README.md        # Documentation

πŸ”§ Prerequisites

  • Python 3.8+
  • MLflow 2.9+
  • DVC 3.30+
  • Kubernetes 1.24+
  • PostgreSQL 13+

πŸ“¦ Installation

# Clone repository
git clone https://github.com/BjornMelin/mlops-toolkit.git
cd mlops-toolkit

# Create environment
python -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

# Initialize infrastructure
make init-infrastructure

πŸš€ Quick Start

from mlops_toolkit import pipeline, monitoring

# Create training pipeline
pipeline = pipeline.MLPipeline(
    name="training-pipeline",
    steps=[
        pipeline.DataPrep(),
        pipeline.Training(),
        pipeline.Evaluation()
    ]
)

# Configure monitoring
monitoring = monitoring.ModelMonitoring(
    metrics=["accuracy", "latency"],
    alerts_config={
        "accuracy_threshold": 0.95,
        "latency_p95_ms": 100
    }
)

# Run pipeline with monitoring
pipeline.run(monitoring=monitoring)

πŸ“š Documentation

Components

Component Purpose Integration Points Scalability
Model Registry Version Control Git, DVC High
Feature Store Feature Management PostgreSQL, Redis Very High
Monitoring Performance Tracking Prometheus, Grafana High
Pipeline Orchestration Workflow Management Airflow, Kubernetes High

Integration

  • CI/CD pipeline integration
  • Kubernetes deployment
  • Cloud provider support
  • Monitoring stack setup

Benchmarks

System performance metrics:

Operation Scale Latency Throughput
Model Registration 100 models/day 2s 50 ops/sec
Feature Serving 10TB dataset 20ms 10k req/sec
Pipeline Execution 50 concurrent 5min 20 jobs/min

🀝 Contributing

πŸ“Œ Versioning

We use SemVer for versioning. For available versions, see the tags on this repository.

✍️ Authors

Bjorn Melin

πŸ“ Citation

@misc{melin2024mlopstoolkit,
  author = {Melin, Bjorn},
  title = {MLOps Toolkit: Enterprise ML Infrastructure Tools},
  year = {2024},
  publisher = {GitHub},
  url = {https://github.com/BjornMelin/mlops-toolkit}
}

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • MLflow community
  • DVC team
  • Kubernetes contributors
  • Open source MLOps community

Made with πŸ› οΈ and ❀️ by Bjorn Melin

About

πŸ› οΈ Enterprise ML infrastructure and deployment tools. Comprehensive suite for ML lifecycle management with focus on GPU cluster optimization. πŸ“Š

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published