Enterprise-grade ML infrastructure and deployment tools. Comprehensive suite of tools and implementations for managing ML lifecycle, experiments, and deployments.
Features β’ Installation β’ Quick Start β’ Documentation β’ Contributing
- Features
- Project Structure
- Prerequisites
- Installation
- Quick Start
- Documentation
- Contributing
- Versioning
- Authors
- Citation
- License
- Acknowledgments
- Automated ML pipelines
- Experiment tracking and versioning
- Model registry and deployment
- A/B testing framework
- Monitoring and alerting
- Feature store implementation
graph TD
A[mlops-toolkit] --> B[pipelines]
A --> C[monitoring]
A --> D[registry]
A --> E[deployment]
B --> F[training]
B --> G[evaluation]
C --> H[metrics]
C --> I[alerts]
D --> J[models]
D --> K[artifacts]
E --> L[kubernetes]
E --> M[serving]
Click to expand full directory structure
mlops-toolkit/
βββ pipelines/ # ML pipelines
β βββ training/ # Training pipelines
β βββ evaluation/ # Evaluation pipelines
βββ monitoring/ # Monitoring suite
β βββ metrics/ # Metrics collection
β βββ alerts/ # Alerting system
βββ registry/ # Model registry
βββ deployment/ # Deployment tools
βββ tests/ # Unit tests
βββ README.md # Documentation
- Python 3.8+
- MLflow 2.9+
- DVC 3.30+
- Kubernetes 1.24+
- PostgreSQL 13+
# Clone repository
git clone https://github.com/BjornMelin/mlops-toolkit.git
cd mlops-toolkit
# Create environment
python -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Initialize infrastructure
make init-infrastructure
from mlops_toolkit import pipeline, monitoring
# Create training pipeline
pipeline = pipeline.MLPipeline(
name="training-pipeline",
steps=[
pipeline.DataPrep(),
pipeline.Training(),
pipeline.Evaluation()
]
)
# Configure monitoring
monitoring = monitoring.ModelMonitoring(
metrics=["accuracy", "latency"],
alerts_config={
"accuracy_threshold": 0.95,
"latency_p95_ms": 100
}
)
# Run pipeline with monitoring
pipeline.run(monitoring=monitoring)
Component | Purpose | Integration Points | Scalability |
---|---|---|---|
Model Registry | Version Control | Git, DVC | High |
Feature Store | Feature Management | PostgreSQL, Redis | Very High |
Monitoring | Performance Tracking | Prometheus, Grafana | High |
Pipeline Orchestration | Workflow Management | Airflow, Kubernetes | High |
- CI/CD pipeline integration
- Kubernetes deployment
- Cloud provider support
- Monitoring stack setup
System performance metrics:
Operation | Scale | Latency | Throughput |
---|---|---|---|
Model Registration | 100 models/day | 2s | 50 ops/sec |
Feature Serving | 10TB dataset | 20ms | 10k req/sec |
Pipeline Execution | 50 concurrent | 5min | 20 jobs/min |
We use SemVer for versioning. For available versions, see the tags on this repository.
Bjorn Melin
- GitHub: @BjornMelin
- LinkedIn: Bjorn Melin
@misc{melin2024mlopstoolkit,
author = {Melin, Bjorn},
title = {MLOps Toolkit: Enterprise ML Infrastructure Tools},
year = {2024},
publisher = {GitHub},
url = {https://github.com/BjornMelin/mlops-toolkit}
}
This project is licensed under the MIT License - see the LICENSE file for details.
- MLflow community
- DVC team
- Kubernetes contributors
- Open source MLOps community
Made with π οΈ and β€οΈ by Bjorn Melin