This repository includes the implementations for our paper at NeurIPS 2024: Are Your Models Still Fair? Fairness Attacks on Graph Neural Networks via Node Injections.
Python 3.8.12
Packages:
dgl==0.6.1
dgl_cu110==0.6.1
numpy==1.21.4
torch==1.7.1+cu110
tqdm==4.62.3
Run the following code to install all required packages.
> pip install -r requirements.txt
-
Due to size limitation, the processed datasets are stored in google drive as
data.zip
. The datasets include Pokec-z, Pokec-n and DBLP. -
Download and unzip the
data.zip
, and the full repository should be as follows:. ├── code │ ├── attack.py │ ├── main.py │ ├── model.py │ ├── run.sh │ └── utils.py ├── data │ ├── dblp.bin │ ├── pokec_n.bin │ └── pokec_z.bin ├── readme.md └── requirements.txt
All arguments are properly set below for reproducing our results.
python main.py --dataset pokec_z --alpha 0.01 --beta 4 --node 102 --edge 50 --before --device 0 --models 'GCN' 'GraphSAGE' 'APPNP' 'SGC'
python main.py --dataset pokec_n --alpha 0.01 --beta 4 --node 87 --edge 50 --before --device 1 --models 'GCN' 'GraphSAGE' 'APPNP' 'SGC'
python main.py --dataset dblp --alpha 0.1 --beta 8 --node 32 --edge 24 --epochs 500 --before --device 2 --models 'GCN' 'GraphSAGE' 'APPNP' 'SGC'
This project is licensed under CC BY-NC-ND 4.0. To view a copy of this license, please visit http://creativecommons.org/licenses/by-nc-nd/4.0/
If you like our work and use the model for your research, please cite our work as follows:
@inproceedings{luo2024nifa,
author = {Luo, Zihan and Huang, Hong and Zhou, Yongkang and Zhang, Jiping and Chen, Nuo and Jin, Hai},
title = {Are Your Models Still Fair? Fairness Attacks on Graph Neural Networks via Node Injections},
booktitle={Thirty-eighth Conference on Neural Information Processing Systems},
year = {2024},
month = {October}
}