-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #38 from FOJ-0/feature/analytical_derivatives
update analytical derivatives
- Loading branch information
Showing
1 changed file
with
177 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,9 +1,181 @@ | ||
using Dynare | ||
module TestDerivatives | ||
using Dynare #Use analytical_derivatives branch | ||
using LinearAlgebra | ||
using FastLapackInterface | ||
using Test | ||
using SparseArrays | ||
using SuiteSparse | ||
|
||
#Model | ||
context = @dynare "models/analytical_derivatives/fs2000_sa.mod" "params_derivs_order=1" "notmpterms"; | ||
|
||
model = context.models[1] | ||
results = context.results.model_results[1] | ||
wss = Dynare.StaticWs(context) | ||
params = context.work.params | ||
steady_state = context.results.model_results[1].trends.endogenous_steady_state | ||
exogenous = context.results.model_results[1].trends.exogenous_steady_state | ||
steadystate = results.trends.endogenous_steady_state | ||
endogenous = repeat(steadystate, 3) | ||
exogenous = results.trends.exogenous_steady_state | ||
|
||
#Get StaticJacobian | ||
df_dx = Dynare.get_static_jacobian!(wss, params, steadystate, exogenous, model) | ||
|
||
#Get StaticJacobianParams | ||
(df_dp, gp) = Dynare.DFunctions.SparseStaticParametersDerivatives!(steadystate, exogenous, params) | ||
|
||
|
||
#1. Get Jacobian matrix using the inverse of df_dx | ||
struct DerivativesWorkspace | ||
dense_df_dx::Matrix{Float64} | ||
df_dx_inv::Matrix{Float64} | ||
result::Matrix{Float64} | ||
end | ||
|
||
function init_derivatives_workspace(n::Int, m::Int) | ||
dense_df_dx = Matrix{Float64}(undef, n, n) | ||
df_dx_inv = Matrix{Float64}(undef, n, n) | ||
result = Matrix{Float64}(undef, n, m) | ||
return DerivativesWorkspace(dense_df_dx, df_dx_inv, result) | ||
end | ||
|
||
function Derivatives(workspace::DerivativesWorkspace, df_dx, df_dp) | ||
dense_df_dx = workspace.dense_df_dx | ||
copyto!(dense_df_dx, df_dx) | ||
|
||
if det(dense_df_dx) == 0 | ||
error("The matrix is not invertible") | ||
end | ||
|
||
df_dx_inv = workspace.df_dx_inv | ||
df_dx_inv .= dense_df_dx \ I | ||
|
||
result = workspace.result | ||
return mul!(result, -df_dx_inv, df_dp) | ||
end | ||
|
||
|
||
#2. Get Jacobian matrix using FastLapackInterface (dense matrix) | ||
struct Derivatives2Workspace | ||
dense_df_dx::Matrix{Float64} | ||
LU_df_dx::LU{Float64, Matrix{Float64}} #not used yet | ||
dx_dp::Matrix{Float64} | ||
end | ||
|
||
|
||
function init_derivatives2_workspace(n::Int, m::Int) | ||
dense_df_dx = Matrix{Float64}(undef, n, n) | ||
LU_df_dx = lu(Matrix{Float64}(I, n, n)) #not used yet | ||
dx_dp = Matrix{Float64}(undef, n, m) | ||
return Derivatives2Workspace(dense_df_dx, LU_df_dx, dx_dp) | ||
end | ||
|
||
|
||
function Derivatives2(workspace::Derivatives2Workspace, df_dx, df_dp) | ||
dense_df_dx = workspace.dense_df_dx | ||
copyto!(dense_df_dx, df_dx) | ||
|
||
LU_df_dx = LU(LAPACK.getrf!(LUWs(dense_df_dx), dense_df_dx)...) | ||
|
||
if any(diag(LU_df_dx.U) .== 0) | ||
error("The matrix is not invertible") | ||
end | ||
|
||
dx_dp = workspace.dx_dp | ||
copyto!(dx_dp, -(LU_df_dx \ df_dp)) | ||
# ldiv!(-1.0, LU_df_dx, df_dp, dx_dp) | ||
|
||
return dx_dp | ||
end | ||
|
||
#3. Get Jacobian matrix using lu(df_dx) (sparse matrix) | ||
struct Derivatives3Workspace | ||
# df_dx::SparseMatrixCSC{Float64, Int64} | ||
LU_df_dx::SuiteSparse.UMFPACK.UmfpackLU{Float64, Int64} #not used yet | ||
dx_dp::Matrix{Float64} | ||
end | ||
|
||
function init_derivatives3_workspace(n::Int, m::Int) | ||
LU_df_dx = SuiteSparse.UMFPACK.lu(sparse(Matrix{Float64}(I, n, n))) #not used yet | ||
dx_dp = Matrix{Float64}(undef, n, m) | ||
return Derivatives3Workspace(LU_df_dx, dx_dp) | ||
end | ||
|
||
function Derivatives3(workspace::Derivatives3Workspace, df_dx, df_dp) | ||
# Perform Sparse LU decomposition | ||
# LU_df_dx = workspace.LU_df_dx | ||
LU_df_dx = lu(df_dx) | ||
# copyto!(LU_df_dx.L, lu_df_dx.L) | ||
# copyto!(LU_df_dx.U, lu_df_dx.U) | ||
|
||
if any(diag(LU_df_dx.U) .== 0) | ||
error("The matrix is not invertible") | ||
end | ||
|
||
# Get dx_dp | ||
dx_dp = workspace.dx_dp | ||
copyto!(dx_dp, -(LU_df_dx \ df_dp)) | ||
# ldiv!(-1.0, LU_df_dx, df_dp, dx_dp) | ||
|
||
return dx_dp | ||
end | ||
|
||
|
||
#4. Get Jacobian matrix using ldiv! (dense matrix) | ||
struct Derivatives4Workspace | ||
dense_df_dx::Matrix{Float64} | ||
LU_df_dx::LU{Float64, Matrix{Float64}} | ||
dx_dp::Matrix{Float64} | ||
end | ||
|
||
function init_derivatives4_workspace(n::Int, m::Int) | ||
dense_df_dx = Matrix{Float64}(undef, n, n) | ||
LU_df_dx = lu(Matrix{Float64}(I, n, n)) | ||
dx_dp = Matrix{Float64}(undef, n, m) | ||
return Derivatives4Workspace(dense_df_dx, LU_df_dx, dx_dp) | ||
end | ||
|
||
function Derivatives4(workspace::Derivatives4Workspace, df_dx, df_dp) | ||
dense_df_dx = workspace.dense_df_dx | ||
copyto!(dense_df_dx, Matrix(df_dx)) | ||
|
||
# LU_df_dx = workspace.LU_df_dx | ||
LU_df_dx = lu(dense_df_dx) | ||
# copyto!(LU_df_dx.L, lu_df_dx.L) | ||
# copyto!(LU_df_dx.U, lu_df_dx.U) | ||
|
||
if any(diag(LU_df_dx.U) .== 0) | ||
error("The matrix is not invertible") | ||
end | ||
|
||
dx_dp = workspace.dx_dp | ||
n, m = size(df_dp) | ||
|
||
for i in 1:m | ||
dp_col = view(df_dp, :, i) | ||
sol_col = view(dx_dp, :, i) | ||
ldiv!(sol_col, LU_df_dx, dp_col) | ||
sol_col .*= -1 | ||
end | ||
|
||
return dx_dp | ||
end | ||
|
||
|
||
# Initialize | ||
n = model.endogenous_nbr | ||
m = model.parameter_nbr | ||
workspace1 = init_derivatives_workspace(n, m) | ||
workspace2 = init_derivatives2_workspace(n, m) | ||
workspace3 = init_derivatives3_workspace(n, m) | ||
workspace4 = init_derivatives4_workspace(n, m) | ||
|
||
# Luego puedes utilizar workspace para llamar a la función Derivatives con tus matrices df_dx y df_dp | ||
@time sol1 = Derivatives(workspace1, df_dx, df_dp); | ||
@time sol2 = Derivatives2(workspace2, df_dx, df_dp); | ||
@time sol3 = Derivatives3(workspace3, df_dx, df_dp); | ||
@time sol4 = Derivatives4(workspace4, df_dx, df_dp); | ||
|
||
(rp, gp) = Dynare.DFunctions.SparseStaticParametersDerivatives!(steady_state, exogenous, params) | ||
# @show Derivatives(df_dx, df_dp); | ||
@test sol1 ≈ sol2 | ||
@test sol1 ≈ sol3 | ||
@test sol1 ≈ sol4 | ||
end # end module |