Skip to content

Latest commit

 

History

History
74 lines (57 loc) · 3.32 KB

File metadata and controls

74 lines (57 loc) · 3.32 KB

Udacity Logo

AWS Machine Learning Engineer Nanodegree

Capstone Project
Arvato Customer Acquisition Prediction Using Supervised Learning

Fady Morris Milad Ebeid

January 22, 2022

Documentation

Libraries Used

Directory Structure

  • notebooks/ : Contains the project Jupyter notebooks and exported HTML files of the project notebooks.
  • src/ : Contains python helper scripts.
  • docs/ : Contains the project report and proposal.

Full project directory structure :

<project root directory>
├── README.md                 - Project readme file.
├── docs/                     - Project documentation directory.
│   ├── proposal.pdf          - Project proposal.
│   └── report.pdf            - Project report.
├── input
│   └── data
│       ├── processed                                            - Project cleaned dataset
│       │   ├── metadata.csv
│       │   ├── test.csv
│       │   ├── train.csv
│       │   └── valid.csv
│       └── raw                                                  - Project raw dataset
│           ├── DIAS Attributes - Values 2017.xlsx                     - Metadata excel file.
│           ├── DIAS Information Levels - Attributes 2017.xlsx
│           ├── Udacity_MAILOUT_052018_TEST.tar.xz                     - Raw testing dataset.
│           └── Udacity_MAILOUT_052018_TRAIN.tar.xz                    - Raw training dataset
├── notebooks                          - Jupyter notebooks
│   ├── 00_common.ipynb                     - Common code that is imported in other notebooks.
│   ├── 01_data-exploration.ipynb           - Exploratory data analysis notebook.
│   ├── 02_data-processing-pipeline.ipynb   - Data processing pipeline notebook.
│   └── 03_classification-model.ipynb       - Model training, tuning and evaluation notebook.
├── output/                                 - Project documentation directory.
│   ├── figures/                            - Project output plots and graphs.
│   ├── submissions                         - Predictions to be submitted to kaggle. 
│   └── tables                              - Project output latex tables and statistics.
└── src                                - Packaged python source code.
    ├── helper_functions.py                 - Helper functions.
    ├── metadata.py                         - Metadata class.
    └── transformers.py                     - Scikit-Learn based transformers.