Skip to content

FadyMorris/udacity-aws-mlnd-capstone-arvato

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Udacity Logo

AWS Machine Learning Engineer Nanodegree

Capstone Project
Arvato Customer Acquisition Prediction Using Supervised Learning

Fady Morris Milad Ebeid

January 22, 2022

Documentation

Libraries Used

Directory Structure

  • notebooks/ : Contains the project Jupyter notebooks and exported HTML files of the project notebooks.
  • src/ : Contains python helper scripts.
  • docs/ : Contains the project report and proposal.

Full project directory structure :

<project root directory>
├── README.md                 - Project readme file.
├── docs/                     - Project documentation directory.
│   ├── proposal.pdf          - Project proposal.
│   └── report.pdf            - Project report.
├── input
│   └── data
│       ├── processed                                            - Project cleaned dataset
│       │   ├── metadata.csv
│       │   ├── test.csv
│       │   ├── train.csv
│       │   └── valid.csv
│       └── raw                                                  - Project raw dataset
│           ├── DIAS Attributes - Values 2017.xlsx                     - Metadata excel file.
│           ├── DIAS Information Levels - Attributes 2017.xlsx
│           ├── Udacity_MAILOUT_052018_TEST.tar.xz                     - Raw testing dataset.
│           └── Udacity_MAILOUT_052018_TRAIN.tar.xz                    - Raw training dataset
├── notebooks                          - Jupyter notebooks
│   ├── 00_common.ipynb                     - Common code that is imported in other notebooks.
│   ├── 01_data-exploration.ipynb           - Exploratory data analysis notebook.
│   ├── 02_data-processing-pipeline.ipynb   - Data processing pipeline notebook.
│   └── 03_classification-model.ipynb       - Model training, tuning and evaluation notebook.
├── output/                                 - Project documentation directory.
│   ├── figures/                            - Project output plots and graphs.
│   ├── submissions                         - Predictions to be submitted to kaggle. 
│   └── tables                              - Project output latex tables and statistics.
└── src                                - Packaged python source code.
    ├── helper_functions.py                 - Helper functions.
    ├── metadata.py                         - Metadata class.
    └── transformers.py                     - Scikit-Learn based transformers.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages