└── README.md
主要訓練程式碼
├── train.py 執行訓練檔
├── training.yaml 調整訓練參數
├── dataset.py 讀取訓練驗證資料
├── model.py 網路架構
└── checkpoint 訓練完成存模型及log的資料夾
主要測試程式碼
├── demo.py 執行預測並匯出結果csv
└── test.py 執行預測並計算成績(有答案)
其他程式碼
├── utils
| ├── csv_utils csv檔相關函式
| ├── dir_utils 路徑相關函式
| ├── model_utils 網路模型相關函式
| └── score_utils 計算分數相關函式
├── csv_data
| ├── testing 測試csv資料夾
| └── training 訓練csv資料夾
└── colab ver_ Colab版本
-
Preliminary uploaded data
-
Preliminary result
- Participating teams: 118
- Official Preliminary list
-
Finals uploaded data
- Confidentiality agreement which couldn't publish the finals' data!
-
Finals result
- Participating teams: 31
- Official Finalists
-
Official training data: 98072
-
Data format (Our objective is entering the input features
F1 ~ F13
and predict the finalOutput
)Data number F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Output 1 0 23.5 23.6 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 0 2 0 23.5 23.6 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 -0.6 3 0 23.5 23.5 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 0.6 4 0 23.5 23.5 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 -0.6 5 0 23.5 23.6 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 -0.3 ...... ... ... ... ... ... ... ... ... ... ... ... ... ... ... -
CSV to independent data
Because the training data has some deviations which the same input feature values get different output results as showed below:Data number F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Output 1 0 23.5 23.6 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 0 2 0 23.5 23.6 23.6 23.6 23.8 24.3 23.6 23.5 22.6 23.3 23.1 22.3 -0.6 ...... ... ... ... ... ... ... ... ... ... ... ... ... ... ... You could run
csv_utils.py
to let all training data are independent with mean or mediam value of output.
-
Configuration file:
training.yaml
TRAINING: Network: 'MLP' EPOCH: 1000 LR: 0.01 LR_MIN: 0.0001 GPU: true BATCH: 1000 VAL_RATE: 0.8 # split validation set from training set VAL_AFTER_EVERY: 1 # save the model per ? epoch TRAIN_DIR: './csv_data/training/independent_mean.csv' # path to training data SAVE_DIR: './checkpoints' # path to save models and images
-
Start training:
train.py
python train.py
-
log file direction:
checkpoints -> log
foldertensorboard --logdir [log path]
- Official preliminary testing data: 7222
-
Pretrained model:
-
Model weight file direction:
checkpoints -> model
folder -
Start testing:
demo.py
python demo.py