Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add 'temporal', 'spatial_dim' and 'geo_scale' attributes to Covmodel #308

Merged
merged 40 commits into from
Jun 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
40 commits
Select commit Hold shift + click to select a range
7b86862
Covmodel: all kwargs after dim are now keyword only
MuellerSeb Jun 6, 2023
985f62b
tests: minimal black fixes
MuellerSeb Jun 6, 2023
83bcf13
covmodel: add time attribute
MuellerSeb Jun 6, 2023
2ef2f6e
time: add time axis to plotter
MuellerSeb Jun 6, 2023
cab5baf
Examples: update examples with new time attribute
MuellerSeb Jun 6, 2023
e6867d6
pylint: ignore 'use-dict-literal', increase max limits
MuellerSeb Jun 6, 2023
a42daed
CovModel: add radius property; correctly scale time axis for latlon; …
MuellerSeb Jun 8, 2023
a4d3d3d
examples: use radius instead of rescale for latlon models now
MuellerSeb Jun 8, 2023
456f34d
CovModel: update __repr__
MuellerSeb Jun 8, 2023
bd536f8
CovModel: rename 'radius' to 'geo_scale' and add more scales
MuellerSeb Jun 12, 2023
cc6d75b
Better geo_scale documentation
MuellerSeb Jun 12, 2023
4746c8d
examples: fix typo
MuellerSeb Jun 12, 2023
af6f522
vario: rename 'bin_centres' to 'bin_center' following doc-string
MuellerSeb Jun 12, 2023
81e9616
tools: add great_circle_to_chordal; add radius to chordal_to_great_ci…
MuellerSeb Jun 12, 2023
97c30b4
vario: add geo_scale to variogram estimation routines
MuellerSeb Jun 12, 2023
b96f844
vario: forward kwargs to standard_bins routine
MuellerSeb Jun 12, 2023
5486a1c
examples: update examples for geo_scale
MuellerSeb Jun 12, 2023
1e21465
debug fix
MuellerSeb Jun 12, 2023
14ccf3d
update latlon auto-bin example with geo_scale
MuellerSeb Jun 12, 2023
8223e2b
examples: update readme for geo_scale
MuellerSeb Jun 12, 2023
d8a1309
krige: auto fitting not possible for spatio-temporal latlon models; u…
MuellerSeb Jun 12, 2023
868d4b1
CovModel: spatial vario/cov/cor now also use xyz with latlon models
MuellerSeb Jun 12, 2023
12012c6
plot: minor fixes for latlon
MuellerSeb Jun 12, 2023
db3e019
CovModel: rename 'time' to 'temporal'
MuellerSeb Jun 13, 2023
2f97808
geo_scale: better docs; always use KM_SCALE in examples
MuellerSeb Jun 13, 2023
c672237
Plot: minor fixes for st plots
MuellerSeb Jun 13, 2023
b62550c
Krige: bugfix for renamed attribute temporal
MuellerSeb Jun 13, 2023
1e47ab7
CovModel: prevent rotation between spatial and temporal dims
MuellerSeb Jun 13, 2023
e821a6a
CovModel: saver setting of anis
MuellerSeb Jun 13, 2023
677fd1a
minor f-string fix
MuellerSeb Jun 13, 2023
f4bc0d1
test temporal related stuff
MuellerSeb Jun 14, 2023
fad4afe
more temporal tests
MuellerSeb Jun 14, 2023
44e174c
CovModel: add 'spatial_dim' argument
MuellerSeb Jun 14, 2023
0ece19c
minor f-string fixes
MuellerSeb Jun 15, 2023
02806be
update changelog
MuellerSeb Jun 15, 2023
d44c819
CovModel: be less strict about key-word-only args (don't want to both…
MuellerSeb Jun 15, 2023
8efe29d
variogram: rename bin_center to bin_centers
MuellerSeb Jun 15, 2023
6356ce0
changelog: minor fix
MuellerSeb Jun 15, 2023
e72bfef
vario: revert moving code-block
MuellerSeb Jun 15, 2023
0881384
changelog: minor markdown fixes
MuellerSeb Jun 15, 2023
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 43 additions & 15 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,34 @@

All notable changes to **GSTools** will be documented in this file.

## [Unreleased] - ? - 2023-?

### Enhancements
- added `temporal` flag to `CovModel` to explicitly specify spatio-temporal models [#308](https://github.com/GeoStat-Framework/GSTools/pull/308)
- rotation between spatial and temporal dimension will be ignored
- added `spatial_dim` to `CovModel` to explicitly set spatial dimension for spatio-temporal models
- if not using `spatial_dim`, the provided `dim` needs to include the possible temporal dimension
- `spatial_dim` is always one less than `field_dim` for spatio-temporal models
- also works with `latlon=True` to have a spatio-temporal model with geographic coordinates
- all plotting routines respect this
- the `Field` class now has a `temporal` attribute which forwards the model attribute
- automatic variogram fitting in kriging classes for `temporal=True` and `latlon=True` will raise an error
- added `geo_scale` to `CovModel` to have a more consistent way to set the units of the model length scale for geographic coordinates [#308](https://github.com/GeoStat-Framework/GSTools/pull/308)
- no need to use `rescale` for this anymore (was rather a hack)
- added `gs.KM_SCALE` which is the same as `gs.EARTH_RADIUS` for kilometer scaling
- added `gs.DEGREE_SCALE` for great circle distance in degrees
- added `gs.RADIAN_SCALE` for great circle distance in radians (default and previous behavior)
- yadrenko variogram respects this and assumes the great circle distances is given in the respective unit
- `vario_estimate` also has `geo_scale` now to control the units of the bins
- `vario_estimate` now forwards additional kwargs to `standard_bins` (`bin_no`, `max_dist`) [#308](https://github.com/GeoStat-Framework/GSTools/pull/308)

### Changes
- `CovModel`s expect special arguments by keyword now [#308](https://github.com/GeoStat-Framework/GSTools/pull/308)
- always use f-strings internally [#283](https://github.com/GeoStat-Framework/GSTools/pull/283)

### Bugfixes
- latex equations were not rendered correctly in docs [#290](https://github.com/GeoStat-Framework/GSTools/pull/290)


## [1.4.1] - Sassy Sapphire - 2022-11

Expand All @@ -25,7 +53,7 @@ All notable changes to **GSTools** will be documented in this file.
- better support for custom generators [#250](https://github.com/GeoStat-Framework/GSTools/pull/250) [#259](https://github.com/GeoStat-Framework/GSTools/pull/259)
- add `valid_value_types` class variable to all field classes [#250](https://github.com/GeoStat-Framework/GSTools/pull/250)
- PyKrige: fix passed variogram in case of latlon models [#254](https://github.com/GeoStat-Framework/GSTools/pull/254)
- add bounds checks for optional arguments of CovModel when resetting by class attribute [#255](https://github.com/GeoStat-Framework/GSTools/pull/255)
- add bounds checks for optional arguments of `CovModel` when resetting by class attribute [#255](https://github.com/GeoStat-Framework/GSTools/pull/255)
- minor coverage improvements [#255](https://github.com/GeoStat-Framework/GSTools/pull/255)
- documentation: readability improvements [#257](https://github.com/GeoStat-Framework/GSTools/pull/257)

Expand Down Expand Up @@ -181,7 +209,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)
- added new `len_rescaled` attribute to the `CovModel` class, which is the rescaled `len_scale`: `len_rescaled = len_scale / rescale`
- new method `default_rescale` to provide default rescale factor (can be overridden)
- remove `doctest` calls
- docstring updates in CovModel and derived models
- docstring updates in `CovModel` and derived models
- updated all models to use the `cor` routine and make use of the `rescale` argument (See: [#90](https://github.com/GeoStat-Framework/GSTools/issues/90))
- TPL models got a separate base class to not repeat code
- added **new models** (See: [#88](https://github.com/GeoStat-Framework/GSTools/issues/88)):
Expand All @@ -208,7 +236,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)
#### Arbitrary dimensions ([#112](https://github.com/GeoStat-Framework/GSTools/issues/112))
- allow arbitrary dimensions in all routines (CovModel, Krige, SRF, variogram)
- anisotropy and rotation following a generalization of tait-bryan angles
- CovModel provides `isometrize` and `anisometrize` routines to convert points
- `CovModel` provides `isometrize` and `anisometrize` routines to convert points

#### New Class for Conditioned Random Fields ([#130](https://github.com/GeoStat-Framework/GSTools/issues/130))
- **THIS BREAKS BACKWARD COMPATIBILITY**
Expand All @@ -232,7 +260,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)

### Changes
- drop support for Python 3.5 [#146](https://github.com/GeoStat-Framework/GSTools/pull/146)
- added a finit limit for shape-parameters in some CovModels [#147](https://github.com/GeoStat-Framework/GSTools/pull/147)
- added a finit limit for shape-parameters in some `CovModel`s [#147](https://github.com/GeoStat-Framework/GSTools/pull/147)
- drop usage of `pos2xyz` and `xyz2pos`
- remove structured option from generators (structured pos need to be converted first)
- explicitly assert dim=2,3 when generating vector fields
Expand All @@ -248,7 +276,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)
- typo in keyword argument for vario_estimate_structured [#80](https://github.com/GeoStat-Framework/GSTools/issues/80)
- isotropic rotation of SRF was not possible [#100](https://github.com/GeoStat-Framework/GSTools/issues/100)
- `CovModel.opt_arg` now sorted [#103](https://github.com/GeoStat-Framework/GSTools/issues/103)
- CovModel.fit: check if weights are given as a string (numpy comparison error) [#111](https://github.com/GeoStat-Framework/GSTools/issues/111)
- `CovModel.fit`: check if weights are given as a string (numpy comparison error) [#111](https://github.com/GeoStat-Framework/GSTools/issues/111)
- several pylint fixes ([#159](https://github.com/GeoStat-Framework/GSTools/pull/159))


Expand All @@ -266,7 +294,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)
### Enhancements
- different variogram estimator functions can now be used #51
- the TPLGaussian and TPLExponential now have analytical spectra #67
- added property ``is_isotropic`` to CovModel #67
- added property `is_isotropic` to `CovModel` #67
- reworked the whole krige sub-module to provide multiple kriging methods #67
- Simple
- Ordinary
Expand All @@ -279,7 +307,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)

### Changes
- Python versions 2.7 and 3.4 are no longer supported #40 #43
- CovModel: in 3D the input of anisotropy is now treated slightly different: #67
- `CovModel`: in 3D the input of anisotropy is now treated slightly different: #67
- single given anisotropy value [e] is converted to [1, e] (it was [e, e] before)
- two given length-scales [l_1, l_2] are converted to [l_1, l_2, l_2] (it was [l_1, l_2, l_1] before)

Expand All @@ -297,31 +325,31 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)

### Bugfixes
- define spectral_density instead of spectrum in covariance models since Cov-base derives spectrum. See: [commit 00f2747](https://github.com/GeoStat-Framework/GSTools/commit/00f2747fd0503ff8806f2eebfba36acff813416b)
- better boundaries for CovModel parameters. See: https://github.com/GeoStat-Framework/GSTools/issues/37
- better boundaries for `CovModel` parameters. See: https://github.com/GeoStat-Framework/GSTools/issues/37


## [1.1.0] - Reverberating Red - 2019-10-01

### Enhancements
- by using Cython for all the heavy computations, we could achieve quite some speed ups and reduce the memory consumption significantly #16
- parallel computation in Cython is now supported with the help of OpenMP and the performance increase is nearly linear with increasing cores #16
- new submodule ``krige`` providing simple (known mean) and ordinary (estimated mean) kriging working analogous to the srf class
- interface to pykrige to use the gstools CovModel with the pykrige routines (https://github.com/bsmurphy/PyKrige/issues/124)
- the srf class now provides a ``plot`` and a ``vtk_export`` routine
- new submodule `krige` providing simple (known mean) and ordinary (estimated mean) kriging working analogous to the srf class
- interface to pykrige to use the gstools `CovModel` with the pykrige routines (https://github.com/bsmurphy/PyKrige/issues/124)
- the srf class now provides a `plot` and a `vtk_export` routine
- incompressible flow fields can now be generated #14
- new submodule providing several field transformations like: Zinn&Harvey, log-normal, bimodal, ... #13
- Python 3.4 and 3.7 wheel support #19
- field can now be generated directly on meshes from [meshio](https://github.com/nschloe/meshio) and [ogs5py](https://github.com/GeoStat-Framework/ogs5py), see: [commit f4a3439](https://github.com/GeoStat-Framework/GSTools/commit/f4a3439400b81d8d9db81a5f7fbf6435f603cf05)
- the srf and kriging classes now store the last ``pos``, ``mesh_type`` and ``field`` values to keep them accessible, see: [commit 29f7f1b](https://github.com/GeoStat-Framework/GSTools/commit/29f7f1b029866379ce881f44765f72534d757fae)
- the srf and kriging classes now store the last `pos`, `mesh_type` and `field` values to keep them accessible, see: [commit 29f7f1b](https://github.com/GeoStat-Framework/GSTools/commit/29f7f1b029866379ce881f44765f72534d757fae)
- tutorials on all important features of GSTools have been written for you guys #20
- a new interface to pyvista is provided to export fields to python vtk representation, which can be used for plotting, exploring and exporting fields #29

### Changes
- the license was changed from GPL to LGPL in order to promote the use of this library #25
- the rotation angles are now interpreted in positive direction (counter clock wise)
- the ``force_moments`` keyword was removed from the SRF call method, it is now in provided as a field transformation #13
- the `force_moments` keyword was removed from the SRF call method, it is now in provided as a field transformation #13
- drop support of python implementations of the variogram estimators #18
- the ``variogram_normed`` method was removed from the ``CovModel`` class due to redundance [commit 25b1647](https://github.com/GeoStat-Framework/GSTools/commit/25b164722ac6744ebc7e03f3c0bf1c30be1eba89)
- the `variogram_normed` method was removed from the `CovModel` class due to redundance [commit 25b1647](https://github.com/GeoStat-Framework/GSTools/commit/25b164722ac6744ebc7e03f3c0bf1c30be1eba89)
- the position vector of 1D fields does not have to be provided in a list-like object with length 1 [commit a6f5be8](https://github.com/GeoStat-Framework/GSTools/commit/a6f5be8bfd2db1f002e7889ecb8e9a037ea08886)

### Bugfixes
Expand Down Expand Up @@ -353,7 +381,7 @@ See: [#197](https://github.com/GeoStat-Framework/GSTools/issues/197)

### Changes
- release is not downwards compatible with release v0.4.0
- SRF creation has been adapted for the CovModel
- SRF creation has been adapted for the `CovModel`
- a tuple `pos` is now used instead of `x`, `y`, and `z` for the axes
- renamed `estimate_unstructured` and `estimate_structured` to `vario_estimate_unstructured` and `vario_estimate_structured` for less ambiguity

Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@ import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
Expand Down
2 changes: 1 addition & 1 deletion docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -200,7 +200,7 @@ This works perfectly well with `cartopy <https://scitools.org.uk/cartopy/docs/la
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
Expand Down
6 changes: 3 additions & 3 deletions examples/03_variogram/06_auto_bin_latlon.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,10 @@
# Since the overall range of these meteo-stations is too low, we can use the
# data-variance as additional information during the fit of the variogram.

emp_v = gs.vario_estimate(pos, field, latlon=True)
sph = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
emp_v = gs.vario_estimate(pos, field, latlon=True, geo_scale=gs.KM_SCALE)
sph = gs.Spherical(latlon=True, geo_scale=gs.KM_SCALE)
sph.fit_variogram(*emp_v, sill=np.var(field))
ax = sph.plot(x_max=2 * np.max(emp_v[0]))
ax = sph.plot("vario_yadrenko", x_max=2 * np.max(emp_v[0]))
ax.scatter(*emp_v, label="Empirical variogram")
ax.legend()
print(sph)
Expand Down
17 changes: 11 additions & 6 deletions examples/08_geo_coordinates/00_field_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,19 @@
First we setup a model, with ``latlon=True``, to get the associated
Yadrenko model.

In addition, we will use the earth radius provided by :any:`EARTH_RADIUS`,
to have a meaningful length scale in km.
In addition, we will use a kilometer scale provided by :any:`KM_SCALE`
as ``geo_scale`` to have a meaningful length scale in km.
By default the length scale would be given in radians (:any:`RADIAN_SCALE`).
A third option is a length scale in degrees (:any:`DEGREE_SCALE`).
MuellerSeb marked this conversation as resolved.
Show resolved Hide resolved

To generate the field, we simply pass ``(lat, lon)`` as the position tuple
to the :any:`SRF` class.
"""
import numpy as np

import gstools as gs

model = gs.Gaussian(latlon=True, var=1, len_scale=777, rescale=gs.EARTH_RADIUS)
model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE)

lat = lon = range(-80, 81)
srf = gs.SRF(model, seed=1234)
Expand All @@ -32,7 +36,7 @@
#
# As we will see, everthing went well... phew!

bin_edges = [0.01 * i for i in range(30)]
bin_edges = np.linspace(0, 777 * 3, 30)
bin_center, emp_vario = gs.vario_estimate(
(lat, lon),
field,
Expand All @@ -41,11 +45,12 @@
mesh_type="structured",
sampling_size=2000,
sampling_seed=12345,
geo_scale=gs.KM_SCALE,
)

ax = model.plot("vario_yadrenko", x_max=0.3)
ax = model.plot("vario_yadrenko", x_max=max(bin_center))
model.fit_variogram(bin_center, emp_vario, nugget=False)
model.plot("vario_yadrenko", ax=ax, label="fitted", x_max=0.3)
model.plot("vario_yadrenko", ax=ax, label="fitted", x_max=max(bin_center))
ax.scatter(bin_center, emp_vario, color="k")
print(model)

Expand Down
18 changes: 9 additions & 9 deletions examples/08_geo_coordinates/01_dwd_krige.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,17 +76,17 @@ def get_dwd_temperature(date="2020-06-09 12:00:00"):

###############################################################################
# First we will estimate the variogram of our temperature data.
# As the maximal bin distance we choose 8 degrees, which corresponds to a
# chordal length of about 900 km.
# As the maximal bin distance we choose 900 km.

bins = gs.standard_bins((lat, lon), max_dist=np.deg2rad(8), latlon=True)
bin_c, vario = gs.vario_estimate((lat, lon), temp, bins, latlon=True)
bin_center, vario = gs.vario_estimate(
(lat, lon), temp, latlon=True, geo_scale=gs.KM_SCALE, max_dist=900
)

###############################################################################
# Now we can use this estimated variogram to fit a model to it.
# Here we will use a :any:`Spherical` model. We select the ``latlon`` option
# to use the `Yadrenko` variant of the model to gain a valid model for lat-lon
# coordinates and we rescale it to the earth-radius. Otherwise the length
# coordinates and we set the ``geo_scale`` to the earth-radius. Otherwise the length
# scale would be given in radians representing the great-circle distance.
#
# We deselect the nugget from fitting and plot the result afterwards.
Expand All @@ -97,10 +97,10 @@ def get_dwd_temperature(date="2020-06-09 12:00:00"):
# still holds the ordinary routine that is not respecting the great-circle
# distance.

model = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
model.fit_variogram(bin_c, vario, nugget=False)
ax = model.plot("vario_yadrenko", x_max=bins[-1])
ax.scatter(bin_c, vario)
model = gs.Spherical(latlon=True, geo_scale=gs.KM_SCALE)
model.fit_variogram(bin_center, vario, nugget=False)
ax = model.plot("vario_yadrenko", x_max=max(bin_center))
ax.scatter(bin_center, vario)
print(model)

###############################################################################
Expand Down
17 changes: 9 additions & 8 deletions examples/08_geo_coordinates/README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,35 +22,36 @@ in your desired model (see :any:`CovModel`):
By doing so, the model will use the associated `Yadrenko` model on a sphere
(see `here <https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.84>`_).
The `len_scale` is given in radians to scale the arc-length.
In order to have a more meaningful length scale, one can use the ``rescale``
In order to have a more meaningful length scale, one can use the ``geo_scale``
argument:

.. code-block:: python

import gstools as gs

model = gs.Gaussian(latlon=True, var=2, len_scale=500, rescale=gs.EARTH_RADIUS)
model = gs.Gaussian(latlon=True, var=2, len_scale=500, geo_scale=gs.KM_SCALE)

Then ``len_scale`` can be interpreted as given in km.

A `Yadrenko` model :math:`C` is derived from a valid
isotropic covariance model in 3D :math:`C_{3D}` by the following relation:

.. math::
C(\zeta)=C_{3D}\left(2 \cdot \sin\left(\frac{\zeta}{2}\right)\right)
C(\zeta)=C_{3D}\left(2r \cdot \sin\left(\frac{\zeta}{2r}\right)\right)

Where :math:`\zeta` is the
`great-circle distance <https://en.wikipedia.org/wiki/Great-circle_distance>`_.
`great-circle distance <https://en.wikipedia.org/wiki/Great-circle_distance>`_
and :math:`r` is the ``geo_scale``.

.. note::

``lat`` and ``lon`` are given in degree, whereas the great-circle distance
:math:`zeta` is given in radians.
:math:`zeta` is given in units of the ``geo_scale``.

Note, that :math:`2 \cdot \sin(\frac{\zeta}{2})` is the
Note, that :math:`2r \cdot \sin(\frac{\zeta}{2r})` is the
`chordal distance <https://en.wikipedia.org/wiki/Chord_(geometry)>`_
of two points on a sphere, which means we simply think of the earth surface
as a sphere, that is cut out of the surrounding three dimensional space,
of two points on a sphere with radius :math:`r`, which means we simply think of the
earth surface as a sphere, that is cut out of the surrounding three dimensional space,
when using the `Yadrenko` model.

.. note::
Expand Down
6 changes: 3 additions & 3 deletions examples/09_spatio_temporal/01_precip_1d.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,13 @@
# half daily timesteps over three months
t = np.arange(0.0, 90.0, 0.5)

# total spatio-temporal dimension
st_dim = 1 + 1
# space-time anisotropy ratio given in units d / km
st_anis = 0.4

# an exponential variogram with a corr. lengths of 2d and 5km
model = gs.Exponential(dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)
model = gs.Exponential(
temporal=True, spatial_dim=1, var=1, len_scale=5, anis=st_anis
)
# create a spatial random field instance
srf = gs.SRF(model, seed=seed)

Expand Down
6 changes: 3 additions & 3 deletions examples/09_spatio_temporal/02_precip_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,13 +27,13 @@
# half daily timesteps over three months
t = np.arange(0.0, 90.0, 0.5)

# total spatio-temporal dimension
st_dim = 2 + 1
# space-time anisotropy ratio given in units d / km
st_anis = 0.4

# an exponential variogram with a corr. lengths of 5km, 5km, and 2d
model = gs.Exponential(dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)
model = gs.Exponential(
temporal=True, spatial_dim=2, var=1, len_scale=5, anis=st_anis
)
# create a spatial random field instance
srf = gs.SRF(model, seed=seed)

Expand Down
Loading