Skip to content

multi-channel target speech extraction with channel decorrelation and target speaker adaptation

License

Notifications You must be signed in to change notification settings

Huihuiwei/channel-decorrelation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Channel Target Speech Extraction with Channel Decorrelation and Target Speaker Adaptation

The codes here are implementations of two methods for exploiting the multi-channel spatial information to extract the target speech. The first one is using a target speech adaptation layer in a parallel encoder architecture. The second one is designing a channel decorrelation mechanism to extract the inter-channel differential information to enhance the multi-channel encoder representation.

To optimize the memory during training process, the memonger technology is applied.

Data

  • Mixtures, cd ./data/anechoic, modify corresponding data path and run sh run_data_generation.sh.
  • Reverberation, cd ./data/reverberate, modify corresponding data path and run sh launch_spatialize.sh.

Usage

  • Training: configure the conf.py and run sh train.sh 0 cd_adap.
  • Evaluate & Separate: modify the corresponding data of decode.sh and run sh decode.sh cd_adap.

Results

System IPD Adap SDR/SiSDR
(0) TD-SpkBeam - - 11.51 / 11.00
(1) Y - 11.57 / 11.07
(2) Parallel - - 12.43 / 11.91
(3) - Y 12.73 / 12.20
(4) CD - - 12.87 / 12.34
(5) - Y 12.87 / 12.35
(6) Y Y 12.55 / 12.01
(7) CC - Y 12.66 / 12.13

Contact

Email: [email protected]

Reference

About

multi-channel target speech extraction with channel decorrelation and target speaker adaptation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 58.4%
  • MATLAB 38.7%
  • Shell 2.9%